
Tail: A Typed and Structured Document Editor

ALPEREN KELES, University of Maryland, College Park, USA

1 INTRODUCTION

Today, the vast literature of programming language theory is complemented by a large body of work
on text editors for programming languages such as pretty printing, linting, or structured editing.
Yet, both document languages and document editors are understudied in the literature, meaning
that the rich landscape of document languages and editors lack a theoretical framework to construct
and evaluate them, as well as understand their semantics. Recent work on a core document calculus
by Crichton and Krishnamurthi [1] motivates a new line of research on document languages by
pointing out their ubiquity, demonstrating the connections between document languages and
programming languages, and providing a formalization of the document language semantics. In
this research, inspired by works such as Hazel [3] on program editors, we propose Tail, a typed and
structured document editor and language for constructing and manipulating document templates.
This extended abstract introduces a model of templates as partial documents, a refinement relation
on partial documents, and builds up the Tail editor on top of the provided refinement relation. The
paper is concluded with the current state of the project followed by a brief discussion of future
directions.

2 LANDSCAPE

The age of modern computing is rich in document editors and languages. On one hand, we have
document languages that host Turing-complete programming languages within them such as
TEX or Typst; on the other hand, we have WYSIWYG editors like Microsoft Word, Google Docs,
Notion, or Obsidian that provide entirely different experiences to their users. Additionally, we also
have special-purpose document editors such as Resume Builders or Contract Generators that hide
the complexity of their document-building process by presenting the user with a set of holes in a
document via forms and switches, instead of the full control general-purpose systems provide.

With the existence of such different options, one question naturally arises. What do these different
options enable for their users? The coarse categorization in the previous paragraph does not allow
us to fully construct a taxonomy of document editors, but we will provide a set of features document
editors tend to facilitate. Below is a non-exhaustive list of features of document systems.

(1) Text: Font, alignment, color, style, spacing

(2) Figures: Charts, tables, images

(3) Interactive Elements: Check-boxes, toggles

(4) Layout: Margin, column layout

(5) References: External (people, database element) or internal (sections, figures)

(6) Re-usability/Programmability: Commands, variables

Author’s address: Alperen Keles, Computer Science Department, University of Maryland, College Park, College Park,
Maryland, USA, akeles@umd.edu.

2 Alperen Keles

One feature that the current document systems lack is the ability to facilitate templating. Here,
templating refers to the capability that a user may create a template that will act as a blueprint for
different users to instantiate with their data. The programmability features are useful for templating,
yet their implementations are either ad hoc (as in the case of Google Docs, where one can create
variables but cannot compose several variables into creating a template), or require too much
manual effort such as in the case TEXor Typst.

3 TAIL

The design of Tail is focused on accommodating templating and therefore filling in the aforemen-
tioned gap in the document system space. A Tail document is a partial document with holes, and
Tail editor allows for refining partial documents by progressively filling holes. In this section, we
express the semantics for the refinement relation and describe Tail editor as a structured editor for
applying semantically valid refinements on partial documents.

Below is the definition of Template. Type constructors are written in bold.

Template t ::= Literal | Stack | Row | Reference | Hole | Plural | Fill | Empty
Literal l ::= String
Reference r ::= Id
Hole h ::= hole Vertical | hole Horizontal
Stack s ::= stack [Template]
Row r ::= row [Template]
Plural p ::= plural Template Template
Fill f ::= fill [Template] Template

For two given Templates, 𝑇1 and 𝑇2, we say 𝑇1 is a refinement of 𝑇2 when there exists a set of
steps for refining 𝑇2 into 𝑇1. Below are the single step relation rules for refinement. ↦→ denotes a
refinement relation, hasHole is a proposition denoting if the Template 𝑡1 has any holes to be filled,
and fill is a function that apply a refinement rule on the hole denoted by hasHole.

(Reflexivity)
𝑡 ↦→ 𝑡

𝑡1 ↦→ 𝑡2 𝑡2 ↦→ 𝑡3 (Transitivity)
𝑡1 ↦→ 𝑡3

(Missing Variable)Reference 𝑣 ↦→ Empty
(Variable Substitution)Reference 𝑟 ↦→ Literal 𝑙
(Unfilled Hole)Hole ℎ ↦→ Empty

(Vertical Template Fill)
hole Vertical ↦→ stack [Template 𝑡 , hole Vertical]

(Horizontal Template Fill)
hole Horizontal ↦→ row [Template 𝑡 , hole Horizontal]

𝑡1 ↦→ 𝑡3 (Plural Source Refinement)
plural 𝑡1 𝑡2 ↦→ plural 𝑡3 𝑡2

𝑡2 ↦→ 𝑡3 (Plural Destination Refinement)
plural 𝑡1 𝑡2 ↦→ plural 𝑡1 𝑡3

TAIL 3∧𝑛
𝑖=1 (𝑡 ↦→ 𝑡𝑖) (Plural Fill)

plural 𝑡 𝑡 ′ ↦→ fill [𝑡1, 𝑡2...𝑡𝑛] 𝑡 ′

ℎ𝑎𝑠𝐻𝑜𝑙𝑒 (𝑡𝑖) 𝑡 ′ = 𝑓 𝑖𝑙𝑙 (𝑡𝑖 , 𝑡) (Stack Hole Fill)
stack [𝑡1...𝑡𝑖 ...𝑡𝑛] ↦→ stack [𝑡1...𝑡 ′...𝑡𝑛]

ℎ𝑎𝑠𝐻𝑜𝑙𝑒 (𝑡𝑖) 𝑡 ′ = 𝑓 𝑖𝑙𝑙 (𝑡𝑖 , 𝑡) (Row Hole Fill)
row [𝑡1...𝑡𝑖 ...𝑡𝑛] ↦→ row [𝑡1...𝑡 ′...𝑡𝑛]

The refinement relation defined with respect to the rules above is still under active development.
The relation acts as a basis for the potential user actions in our editor. For a more formal definition,
readers are encouraged to read the short inductive definition of the refinement relation in the Coq
theorem prover in Appendix A.

3.1 Rendering Documents

So far, we have talked about partial documents, and how Tail is a useful tool for creating and
manipulating partial documents. Yet, to be useful, Tail also needs to be able to render these
documents into readable forms. Although we do not currently have formal semantics for the
rendering process, we have two implementations, one in Rust, one in TypeScript, that can render
documents with realistic document features such as custom fonts, alignments, and styles.

3.2 Future Work: Document Editing with Live GUI’s

In PLDI’21, Omar et al. [2] has introduced Livelit’s into Hazel [3]. A livelit allows clients to
manipulate programs using a live GUI instead of by code. We propose a similar mechanism with
respect to our variable declarations. A Reference in Tail is a variable defined within a template to
be filled by the user. References can have types, where examples of such types can include a string,
date, number, location, list. In the future, we plan to add (1) a type system for being able to define
custom types, (2) a mechanism for implementing customized editors for user-defined types. Livelits
will be useful for modelling features such as charts or tables that many editors implement using
ad hoc mechanisms, and their extensibility will give template designers to simulate creating their
editors.

4 CONCLUSION

Tail is a project born of a practical need for document templating, built on top of a simple non-
overlapping document model and relies on an abstract refinement relation for partial documents
for correctness and generality. Whereas programming language community has worked on under-
standing the trade-offs of different designs of programming languages and editors, developed tools
for analyzing and optimizing programs, our understanding of the document systems of today are
archaic with respect to the level of understanding we have for programming systems. This study,
following the path of others working on understanding document systems, is a step in following
through this long needed path.

REFERENCES

[1] Will Crichton and Shriram Krishnamurthi. 2023. A Core Calculus for Documents. arXiv:cs.PL/2310.04368
[2] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 2021. Filling Typed Holes with

Live GUIs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 511–525. https://doi.org/10.
1145/3453483.3454059

[3] Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, and Matthew A. Hammer.
2017. Toward Semantic Foundations for Program Editors. arXiv:cs.PL/1703.08694

http://arxiv.org/abs/cs.PL/2310.04368
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059
http://arxiv.org/abs/cs.PL/1703.08694

4 Alperen Keles

APPENDIX A

Require Import String List.
Inductive Orientation := Horizontal | Vertical.
Inductive Template :=
| Literal: string → Template

| Stack: list Template→ Template

| Row: list Template→ Template

| Reference: string → Template

| Hole: Orientation → Template

| Plural: Template→ Template→ Template

| Fill: list Template→ Template→ Template

| Empty: Template.

Axiom fill : Template→ Template → Template.

Inductive hasHole : Template→ Prop :=
| hasHole_stack: forall ts, AllHasHole ts → hasHole (Stack ts)
| hasHole_row: forall ts, AllHasHole ts → hasHole (Row ts)
| hasHole_hole: forall o, hasHole (Hole o)
with AllHasHole : list Template → Prop :=
| AllHasHole_nil: AllHasHole nil

| AllHasHole_cons: forall t ts, hasHole t → AllHasHole ts → AllHasHole (t :: ts).

Inductive Refinement: Template→ Template→ Prop :=
| refine_id: forall t, Refinement t t
| refine_transitive: forall t1 t2 t3, Refinement t1 t2→ Refinement t2 t3→ Refinement t1 t3

| refine_missing_var : forall s, Refinement (Reference s) Empty
| refine_variable_subst: forall v s, Refinement (Reference v) (Literal s)
| refine_unfilled_hole : forall o, Refinement (Hole o) Empty
| refine_vertical_template_fill: forall t, Refinement (Hole Vertical)

(Stack (t :: (Hole Vertical) :: nil))
| refine_horizontal_template_fill: forall t, Refinement (Hole Horizontal)

(Row (t :: (Hole Horizontal) :: nil))
| refine_plural_source: forall t1 t2 t3, Refinement t1 t3→

Refinement (Plural t1 t2) (Plural t3 t2)
| refine_plural_destination: forall t1 t2 t3, Refinement t2 t3→

Refinement (Plural t1 t2) (Plural t1 t3)
| refine_plural_fill: forall t1 t2 ts, AllRefines ts t1 → Refinement (Plural t1 t2) (Fill ts t2)
| refine_stack_fill: forall t1 t2 ts ts', hasHole t1→

Refinement (Stack (ts ++(t1 :: nil) ++ts'))
(Stack (ts ++(fill t1 t2 :: nil) ++ts'))

| refine_row_fill: forall t1 t2, hasHole t1→ Refinement (Row (t1 :: nil))
(Row (fill t1 t2 :: nil))

with AllRefines : list Template→ Template→ Prop :=
| refine_nil : forall t, AllRefines nil t

| refine_cons : forall t1 ts t2, AllRefines ts t2 → Refinement t1 t2→ AllRefines (t1 :: ts) t2.

	Abstract
	1 Introduction
	2 Landscape
	3 Tail
	3.1 Rendering Documents
	3.2 Future Work: Document Editing with Live GUI's

	4 Conclusion
	References

