Puzzles as Algorithmic Problems

This article is a brief advocacy for the use of puzzles
as algorithmic problems for learning purposes as an
alternative to the current style of Competitive Program-
ming(CP) or Mathematics problems.

The current trend in “how to learn algorithms” is
mostly based on big tech companies and their inter-
view process. This process is interleaved with the
ICPC(International Collegiate Programming Contest)
style of competitive programming, where a problem is
usually a combination or adaptation of several known
algorithms or mathematical concepts. | see four prob-
lems with this approach:

1. The problems are not real-world problems

2. The problems have pre-defined and deter-
mined solutions

3. The problems are very hard to solve if you
don’t already know the solution

4. The problems are not fun

Let me elaborate on these points by walking through
the process of solving a LeetCode problem. | picked
a medium problem with 34.5% solve rate, 3Sum. The
problem statement is as follows:

Given an integer array nums, return all the triplets
[nums[i], numslj], nums[k]] such thati!=j,i!=
k,and j =k, and nums[i] + nums[j] + nums[k] ==
0. Notice that the solution set must not contain
duplicate triplets.

The naive solution would be to simply brute force the
entire array, which would be O(n"3). This is obviously
not the intended solution, so we are led to think where
we can optimize. A classic approach for array questions
is to first sort the array in the hope that it will allow for
some optimization in the algorithm. After sorting the
array, we can use the two-pointer technique to find the
triplets.

As you might’ve realized when reading the above para-
graph, | didn’t invent anything when solving the ques-
tion. In fact, the author already had an optimal solu-
tion, as well as a naive one, when they were writing

the question. This is a common theme in competitive
programming problems. The author has some solution
in mind, usually by combining a few techniques or al-
gorithms in a clever way, and the problem solver has
to figure out that specific solution.

Thisisin stark contrast to real-world problems. In areal-
world problem, there is no “existing” solution that you
have to discover. Of course the tricks and techniques
you learn from competitive programming can be ap-
plied to real-world problems, but the process of solving
a real-world problem is much more open-ended. You
also need to decide on your constraints yourself, un-
like the constraints given in competitive programming
problems. What does it mean for your algorithm to
be “fast enough”? Even further, what does it mean
for your algorithm to be “correct”? In CP, the answer
is usually “passes all test cases”, but in the real world,
the answer is not so clear-cut.

Given such discrepancies, | am proposing solving puz-
zles by devising algorithms for them as an alternative
to CP problems. The puzzles are actually fun to work
with, they aren’t designed to be solved algorithmically,
so there is no solution you have to discover, you ac-
tually have to invent a solution. These puzzles can
be anything from variants of Sudoku to small Chess
problems, any puzzle that doesn’t require any special
knowledge to solve. The fact that you have to define
your own constraints makes solving puzzles a much
better approximation of real-world problem solving
than CP problems. Solving a puzzle algorithmically
means that (1) you must define your constraint for cor-
rectness and performance, as well as the space of in-
puts you are interested in, (2) you must devise a robust
testing strategy, (3) you must model the problem space
as a data structure in the programming language, per-
haps think about the trade-offs between different rep-
resentations of the problem space, (4) you must devise
an algorithm that solves the problem, and (5) you must
implement the algorithm and test it. Together, | be-
lieve these steps are a much better approximation
of real-world problem solving than CP problems.

—— e e e -—-----

Figure 1: Paintbrush Puzzle

Figure 1 an example of a puzzle that | solved recently.
Your task is to find a set of brushes that paint the source
into the target canvas. For this particular example,
brushing order A-F-B-D is the solution. Can you devise
a general algorithm for solving this puzzle for any
source and target canvas in any size? If you're inter-
ested, you can also read my solution at
https://www.alperenkeles.com/blog/paintbrush.


https://www.alperenkeles.com/blog/paintbrush

	Puzzles as Algorithmic Problems

