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Abstract

Property-based testing is a mainstay of functional programming, boasting a rich literature, an enthu-
siastic user community, and an abundance of tools — so many, indeed, that new users may have
difficulty choosing. Moreover, any given framework may support a variety of strategies for generating
test inputs; even experienced users may wonder which are better in any given situation. Sadly, the PBT
literature, though long on creativity, is short on rigorous comparisons to help answer such questions.

We present Etna, a platform for empirical evaluation and comparison of PBT techniques. Etna
incorporates a number of popular PBT frameworks and testing workloads from the literature, and
its extensible architecture makes adding new ones easy, while handling the technical drudgery of
performance measurement.

To illustrate its benefits, we use Etna to carry out several experiments with popular PBT approaches
in Rocq, Haskell, OCaml, Racket, and Rust, allowing users to more clearly understand best practices
and tradeoffs.
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1 Introduction

Haskell’s QuickCheck library popularized property-based testing (PBT), which lets users
test executable specifications of their programs by checking them on a large number of
inputs. In fact, QuickCheck made PBT so popular that Claessen and Hughes’s seminal
paper [2000] is the most cited ICFP paper of all time by a factor of two, according to the
ACM Digital Library. PBT tools can now be found in languages from OCaml (Cruanes,
2017; Dolan, 2017) and Scala (Nilsson, 2019) to Erlang (Arts et al., 2008; Papadakis
and Sagonas, 2011) and Python (MacIver, 2016), not to mention proof assistants like
Rocq (Lampropoulos and Pierce, 2018), Agda (Lindblad, 2007), and Isabelle (Bulwahn,
2012𝑎).

Many aspects of PBT impact its effectiveness, from the properties themselves (Hughes,
2019) to counterexample minimization (Maciver and Donaldson, 2020), but arguably the
most crucial one is the algorithm for generating test inputs. Papers citing QuickCheck often
retain its distinctive style of random test-case generation, but many other options have
been explored. In particular, enumerative PBT has also become a staple in the functional
programming community (Runciman et al., 2008; Braquehais, 2017), and tools for feedback-
based PBT are gaining ground (Lampropoulos et al., 2019; Dolan, 2017; Löscher and
Sagonas, 2017). Each of these approaches comes with benefits and tradeoffs, and choosing
one over another can make a big difference on testing effectiveness.

Even after selecting a generation style — say, random PBT — one may be left with
quite a few options of framework, each with its own unique style. In Haskell, for example,
both QuickCheck and Hedgehog (Stanley, 2019) are quite popular. And even after selecting
a framework — say, QuickCheck — there are yet more options for choosing a specific
generation strategy. Tools like generic-random (Xia, 2018) and DraGEN (Mista and Russo,
2021) can derive QuickCheck generators from type information, offering a quick and
accessible entrypoint to PBT, but their effectiveness suffers when inputs need to satisfy
more complex semantic constraints. Alternatively, one can write a bespoke generator that
is “correct by construction,” producing only valid test inputs. Such bespoke generators can
sometimes become quite sophisticated (Palka et al., 2011; Midtgaard et al., 2017; Hritcu
et al., 2016). And there are other options: for example, QuickChick, Rocq’s variant of
QuickCheck, can derive specialized generators for free from specifications expressed as
inductive relations (Paraskevopoulou et al., 2022). Nuances of the properties under test
may make strategies more or less preferable, and considerable experience may be required
to make a good choice.

Moreover, even after selecting a particular way of using the tool — say, writing a
bespoke generator — there are yet more options: a given generator can typically be tuned
to produce different sizes and shapes of data. For example, QuickCheck generators can
be parameterized both globally by a size parameter and locally by choices like numeric
weights on the arguments to various combinators.

In the existing literature, there are plenty of performance evaluations for individual PBT
tools, but a dearth of comparisons across the various available design dimensions. New
tools are typically evaluated on just one or two case studies, often showcasing incomparable
measures of effectiveness. So how is a PBT user supposed to make sense of all these options?
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How is a tool designer supposed to measure success? How can we turn PBT from an art to
a science?

Answering these questions is the goal of this paper. Our contributions are:

• We present Etna, an extensible platform for evaluating and comparing generation
techniques for PBT, with generic support for measuring performance and presenting
results (§2).1

• We populate Etna with six testing workloads from the literature presenting a range
of bug-finding challenges, with PBT frameworks in Haskell, Rocq, OCaml, Racket,
and Rust, and with various strategies for using each framework (§3).

• We report on our experiences using Etna to make observations about PBT perfor-
mance. Some of these observations lend empirical weight to commonly held beliefs,
while others suggest improvements to existing processes and tools (§4, §5, and §6).

• We extend Etna with support for cross-language experimentation with popular PBT
frameworks in Haskell, Rocq, OCaml, Racket, and Rust (§7), enabling, for the first
time, precise comparisons of generator efficiency and effectiveness across languages.

We discuss related and future work in §8.

2 Platform Design

The central purpose of Etna is to give researchers, library authors, and expert PBT users
an extensible platform for experimenting with their testing strategies. In this section, we
outline our design principles and the rationale behind them. Then we describe the Etna
architecture and finish with a discussion and depiction of communicating with Etna as
a user. Before all that, however, we’ll begin by providing background on the generation
strategies themselves.

2.1 Background: Property-Based Testing and Generation Strategies

A key difference between approaches to PBT is how each deals with preconditions. Consider
binary search trees, where each node value is greater than everything to its left and less
than everything to its right. In Haskell syntax:

data Tree k v = Leaf | Node (Tree k v) k v (Tree k v)

isBST :: Tree k v -> Bool

insert :: k -> v -> Tree k v -> Tree k v

What properties should we expect to hold for operations on BSTs such as isBST and
insert? Hughes thoroughly answers this question in his guide to writing properties of
pure functions [2019]. For instance, one desirable property is that if we insert a key into a
valid BST, then it should remain a valid BST:

1 Etna is publicly available at https://github.com/alpaylan/etna-cli.

https://github.com/alpaylan/etna-cli
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prop_InsertValid :: Tree Int v -> Int -> Property

prop_InsertValid t x = isBST t ==> isBST (insert x t)

Here ==> encodes a precondition. That is, the insert function is only exercised when the
binary tree t satisfies the isBST predicate; otherwise, the property is vacuously true.

There are many ways to generate data for properties like this. A simple approach is to
straightforwardly follow the structure of the types to generate arbitrary trees and filter out the
ones that are not BSTs. While simplistic, this approach works well in some circumstances.
In fact, for the BST example, such type-driven approaches can find all bugs introduced
in Hughes’s guide to writing properties of pure functions [2019]. But this generate-and-
filter approach breaks down with “sparse” preconditions that are harder to satisfy randomly;
for instance, valid red-black trees are harder to generate at random than valid BSTs, so type-
driven strategies work less well (see §4 and §5). For yet sparser preconditions, such as C
programs with no undefined behaviors (Yang et al., 2011), such an approach is hopeless.
On the other end of the spectrum, users can write bespoke generators: programs that are
manually tailored to produce the desired distribution. Such programs can be extremely
effective in finding bugs when the inputs satisfy the precondition by construction, but they
can also be extremely difficult to write. A well-crafted such generator can in fact be a
significant research result: such is the case for many well-typed term generators in the last
decade (Palka et al., 2011; Midtgaard et al., 2017; Hoang et al., 2022; Frank et al., 2024).
Naturally, there are also approaches in the middle. For instance, some use the structure of
the precondition to produce valid data directly (Bulwahn, 2012𝑏; Claessen et al., 2014;
Fetscher et al., 2015; Lampropoulos et al., 2017, 2018), while others leverage feedback to
guide generation towards valid or otherwise interesting inputs (Löscher and Sagonas, 2017;
Löcher and Sagonas, 2018; Lampropoulos et al., 2019).

2.2 Design Principles

Etna is desinged to help researchers and framework developers quickly experiment with
different options for PBT data generation. During Etna’s development, we focused on a
few key design principles, centered around usefulness, extensibility, and maintainability.

2.2.1 Evaluate for the ground truth, not for proxy metrics.

How do we measure the effectiveness of a generator? The software testing literature offers
two main answers: code coverage and mutation testing. Code coverage is popular, but
problematic: higher coverage does not always translate to better bug finding (Gopinath
et al., 2014; Klees et al., 2018). We instead choose mutation testing (Jia and Harman, 2011),
which measures the effectiveness of testing by artificially injecting mutations to the system
under test and checking if testing is able to detect them. Mutations in the literature (Hazimeh
et al., 2020; Klees et al., 2018; Zhang et al., 2022; Hritcu et al., 2016) fall on a spectrum
from manually sourced to automatically synthesized. We opt for manual sourcing, allowing
us to more readily maintain ground truth and ensure that every mutant violates some aspect
of the property specification. Etna supports a terse syntax for incorporating these mutants
into the systems under test. In §3, we detail the systems evaluated in this paper.
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2.2.2 Use minimal, but precise interfaces.

A key challenge during Etna’s development is that it needs to gather data about the testing
effectivenes of a wide variety of existing frameworks, each of which reports such data in
an ad-hoc non standardized manner: Most framework only report the number of inputs that
were generated before a counterexample was found; very few offer timing statics; none
offer a detailed breakdown of generation, testing, or minimization time. Similarly, most
frameworks report the number of inputs that fail to satisfy a precondition as discards; some
(like Rust’s QuickCheck and Racket’s RackCheck) do not. Most frameworks allow for
setting a limit on the number of tests; very few allow for setting such time limits. Moreover,
any printing of such data is optimized for human readability—with little to no consideration
to how machine-readable this output is.

To tame this diversity, we settled on a set of metrics for PBT frameworks that are easily
measurable, and on a precise output format that developers can adhere to: JSON defined
using a schema that frameworks can validate themselves on. We built adaptors to that
schema for frameworks across multiple languages (§7).2

2.2.3 Every Etna capability should be available to use manually

Etna acts as an orchestration mechanism that invokes testing tools, parses their results, and
performs analysis on them. Such orchestration is, even with the best of intentions, fragile as
a result of loosely coupled independently developed systems working together. In turn, as
we found out from experience, any opaqueness in this process can result in unrecoverable
failures. The final guiding principle of Etna is to ensure not just that such opaqueness
doesn’t exist, but that users can also reproduce the steps of any Etna experiment manually,
if they so wish.

2.3 Terminology

Our mutation-testing based evaluation is built upon tasks: a mutant-property pair where
the mutant causes the property to fail. As any given program can give rise to multiple
tasks — it might need to satisfy multiple properties or be subjected to multiple mutants —
we organize tasks into workloads. Each workload comes with several components: data
type definitions; variant implementations of functions using these types; and a property
specification of these functions.

We call a PBT paradigm at the level of a library a framework, which should contain
functions for (a) constructing properties, (b) constructing generators, and (c) running tests.
For instance, QuickCheck, QuickChick, SmallCheck and LeanCheck are all examples of
frameworks. And we call a PBT paradigm at the level of how to use a framework to write
generators a strategy. Examples of such strategies include type-based random generation,
manually written bespoke generation, or exhaustive enumeration of the input space.

2 https://github.com/alpaylan/etna-cli/blob/main/PROTOCOL.md

https://github.com/alpaylan/etna-cli/blob/main/PROTOCOL.md
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2.4 Using Etna

Etna is designed to be an extensible platform that flexibly accommodates new workloads,
strategies, frameworks, and languages, built with inspiration from modern package man-
agers such as Cargo [2018]. At its core is an experiment driver that provides three main
pieces of functionality: (a) toggling between variant implementations in a directory of
workloads; (b) compiling and running each strategy on each task; and (c) analyzing the
results.

Users interact with Etna by creating such experiments: projects that can host multiple
tests, pull workloads from Etna and modify them as the users wish, holding the raw data
produced by experimentation, the analysis results and figures.

To replicate one of the existing experiments, the users can either reuse the experiment
repository that holds the tests and experimentation scripts for this paper or create a new
experiment from scratch, potentially reusing existing workload/strategy pairs.

To evaluate a new generation strategy if the framework is already supported, they only
need to extend one of the existing experiment scripts to include their new strategy. If the
framework is not supported, they need to first implement an adaptor for the framework that
provides the information the CLI requires, following the existing examples of Haskell, Rocq,
OCaml, Racket, or Rust. The adapters follow a schema available at the Etna repository.

Finally, to contribute a new workload, users can implement the system under test just as
they would ordinary code in a supported language. Then, they can then encode mutants via
special comment syntax embedded within the implementation. For example, consider the
following implementation of insert, together with a triggerable bug, in Haskell syntax:

insert k v E = T E k v E

insert k v (T l k’ v’ r)

{-! -}

| k < k’ = T (insert k v l) k’ v’ r

| k > k’ = T l k’ v’ (insert k v r)

| otherwise = T l k’ v r

{-!! insert_becomes_singleton -}

{-!

| k < k’ = T (insert k v l) k’ v’ r

| otherwise = T l k’ v’ (insert k v r)

-}

{- !-}

The correct (i.e. uncommented) implementation of insert ensures that the search tree
invariant is maintained: every key in the left subtree of a node is smaller than its root,
and every key in the right subtree is greater. In specially marked comments, a mutant is
specified, which triggers a bug if enabled by not considering the case where the key being
inserted is already present in the tree.
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2.5 Analysis and Presentation

Though Etna supports customizable
experiments, we choose a standard set
of defaults for the experiments in this
paper. We run each strategy on each task
for a set amount of trials (10 unless oth-
erwise specified) and with a set timeout (60 seconds). We then measure if the strategy was
able to solve the task, i.e. find the injected bug in all trials within the given time frame.
Multiple trials account for the non-determinism of random generation strategies, and results
are simple averages unless indicated otherwise.

Our first attempts at presenting this data were hard to interpret: what does it mean,
for example, if one strategy takes an average of two seconds and the other an average of
three? Rather than present a slew of raw numbers, we wanted a data representation that
captures a user’s experience of interacting with PBT tools, so that visual differences in
the representation correspond to tangible differences in performance. The figure above
demonstrates our solution: a task bucket chart. For every strategy we classify tasks ranging
from “solved instantly” to “unsolved”, depicted with progressively lighter shades. For
example, for the strategy/workload combination in the figure, 14 tasks are solved very
quickly (the darkest shade) while four are not solved at all (the lightest).

In case a task bucket chart does not show enough detail, especially in head-to-head
comparisons, we also support statistical analyses like Mann–Whitney U tests3 (see §4.1).

3 Populating the Platform

We have integrated a number of PBT frameworks and workloads into Etna, both for our
own use in §4 - §7 and for potential users to use and compare against.

3.1 Languages and Frameworks

Haskell is an obvious starting point: as the language that hosts QuickCheck, it is the lingua
franca of PBT research. We focus on three Haskell frameworks: QuickCheck, of course;
SmallCheck (Runciman et al., 2008), a competitor to QuickCheck that does enumerative
testing; and LeanCheck (Braquehais, 2017), a more modern enumerative framework.

Our second language of choice is Rocq. While Haskell is blessed with many PBT
frameworks, PBT in Rocq is built on a single framework: QuickChick (Lampropoulos and
Pierce, 2018). However, QuickChick is a rich ecosystem that supports a variety of different
strategies for input generation (Lampropoulos, 2018; Lampropoulos et al., 2018, 2019), so
there is plenty to study and compare.

The third language we focus on is OCaml. Like Haskell, OCaml users can reach of a
variety of random testing frameworks, from QuickCheck variants (QCheck (Cruanes, 2017)
or base quickcheck (Street, 2019)) to AFL-powered fuzzers like Crowbar (Dolan, 2017)).

3 The Mann–Whitney U test is a nonparametric test that compares data samples from two different distributions.
We use it here because it makes no assumptions about the distributions being compared.
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For these three languages, we perform intra-language experiments comparing different
generation strategies (§4, §5, §6). We will also show how to perform cross-language
experiments with Etna (§7), using strategies both from these languages, as well as Racket
(using its RackCheck framework (Popa, 2021)) and Rust (using (Gallant, 2014)). Etna’s
extensible design means that adding new languages is straightforward; we discuss languages
that we plan to add to the platform in §8.

3.2 Workloads

Our initial set of workloads is drawn from three application domains that are of practical
interest to the functional programming community and that have featured prominently in the
PBT literature. These workloads feature in the following sections’ experiments, although
not every workload is used for every experiment. A detailed description of each workload,
together with a list of properties and associated mutants, can be found in the repository.

Data Structures. The first workload focuses on a functional data structure that is ubiq-
uitous in the literature: binary search trees. Multiple PBT papers have focused on BST
generation, including John Hughes’s How to Specify It! [2019], an extended introduction
to specifying properties using QuickCheck. Our BST workload ports the mutations and
properties from that paper. The second workload focuses on another popular functional
data structure, red-black trees, including self-balancing insertion and deletion operations
that are notoriously easy to get wrong. RBTs have also been studied in the PBT litera-
ture (Lampropoulos et al., 2017; Runciman et al., 2008; Mista and Russo, 2019; Klein and
Findler, 2009). Our RBT workload combines the BST mutants with additional mutants that
focus on potential mistakes when balancing or coloring the tree.

Lambda Calculi and Type Systems. The third workload centers around a DeBruijn index
based implementation of the simply typed lambda calculus with booleans. Bespoke genera-
tors for producing well-typed lambda terms is a well studied problem in the literature (Palka
et al., 2011; Midtgaard et al., 2017), while the mutations for STLC included in our case study
are drawn from the appropriate fragment of a System F case study (Goldstein et al., 2021),
dealing mostly with mistakes in substitution, shifting, and lifting. For a more complicated
fourth workload F< : revolving around calculi and type systems, we turn to the full case
study of Goldstein et al. (2021) and extend it with subtyping. This allows for significantly
more complex errors to be injected (such as those dealing with type substitution, shifting,
or lifting). Bespoke generators for System F have been the subject of recent work (Goldstein
et al., 2021; Hoang et al., 2022) and can be straightforwardly extended to handle subtyping.
The fifth workload involves a parser and pretty-printer for Lu, a language based on Lua; the
implementation of Lu was drawn from a Haskell course at the University of Pennsylvania.
We specify correctness through a round-trip property: printing a valid Lu expression and
then parsing it should result in the original expression.

Security. The sixth and final workload focuses on a security domain: information flow
control. The IFC case study, introduced by Hritcu et al. (2013, 2016), explores the effec-
tiveness of various bespoke generators for testing whether low-level monitors for abstract
machines enforce noninterference: differences in secret data should not become publicly
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visible through execution. Violations in the enforcement policies are introduced by system-
atically weakening security checks or taint propagation rules, exploring all possible ways
of introducing such violations.

4 Experiments: Haskell

We next report on our experience using Etna to probe different aspects of testing effec-
tiveness. Our first set of observations are on the PBT frameworks and strategies available
in Haskell.

4.1 Comparing Frameworks

In the first experiment, we assess the “out of the box” bug-finding abilities of three Haskell
frameworks — QuickCheck, SmallCheck, and LeanCheck. We examine four strategies. For
the bespoke strategy, we manually write a QuickCheck generator that always produces test
inputs that satisfy the property’s precondition. This serves as a “topline” for the other strate-
gies: a high-effort generator that solves all of the tasks easily. The other three strategies —
one per framework — are all naive. The QuickCheck strategy uses the generic-random
library to derive its generator automatically, with constructors chosen at each step with
uniform probability and a size parameter that decreases on recursive calls to ensure termi-
nation. For the enumerative frameworks, SmallCheck and LeanCheck, we use combinators
that follow the type structure.

We evaluate these strategies against four workloads: BST, RBT, STLC, and F< :.

Results. We visualize the results of this experiment in Figure 1. Some points to note:
The bespoke strategy outperforms the naive strategies along multiple axes. For example,

looking at the naive QuickCheck strategy (the others are similar), the bespoke strategy
solved all tasks, while the naive strategy failed to solve 43 tasks. Among tasks that both
strategies solved, using a Mann–Whitney U test with 𝛼 = 0.05, we find that the bespoke
strategy’s average time to solve a task was (statistically) significantly lower in 83 out of 124
tasks and the average valid inputs to solve a task were lower for 89 out of 124 tasks. That
is, the bespoke strategy found more bugs, more quickly, and with better quality tests.

Between the two enumeration frameworks, LeanCheck substantially outperforms
SmallCheck on these workloads. LeanCheck had an 82% solve rate, while SmallCheck’s
was only 35%. On one BST task, LeanCheck found the bug in about a hundredth of a
second on average, while SmallCheck required 26 seconds. One reason for these differ-
ences may be that SmallCheck attempts to enumerate larger inputs much earlier. In the first
thousand binary trees, SmallCheck produces trees with up to ten nodes, while LeanCheck
only reaches four nodes. Unsurprisingly, it is harder for larger trees to satisfy the BST
invariant — only 1% of these thousand SmallCheck trees are valid, compared to 13% of
the LeanCheck trees. And across all workloads, we can calculate the rate at which they
enumerate test inputs, by aggregating over the tasks that they both solved and dividing by
the total number of tests by the total time spent. We find that LeanCheck produces over a
hundred times more tests per second than SmallCheck.
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(a) BST (b) RBT

(c) STLC (d) F< :

Fig. 1: Effectiveness of Haskell generation strategies on four workloads.
= Naive QuickCheck, = Naive LeanCheck,

= Naive SmallCheck, = Bespoke QuickCheck.

LeanCheck also outperforms naive QuickCheck. It is illuminating to consider failed tasks
that were partially solved: the bug was found in at least one trial and not found in at least
one trial. There is one such task for LeanCheck and 14 for QuickCheck. For LeanCheck’s
partially solved task, the inputs required are the same for each trial, but the time fluctuates
between 55 and 65 seconds. That is, this is a situation where a task nears — and sometimes
exceeds — what LeanCheck can reach with the one minute time limit. QuickCheck’s
partially solved tasks are also interesting. Of the 13 that LeanCheck solves but QuickCheck
does not, 10 are partially solved by QuickCheck. This suggests that there are situations where
a deterministic approach may be more reliable than a random alternative: LeanCheck solves
these tasks consistently and relatively quickly, while QuickCheck sometimes takes less than
a second, sometimes nearly a minute, and sometimes times out.

Similarly, in STLC, naive LeanCheck solves three more tasks within the first bucket
than the bespoke strategy. Upon closer inspection, these are tasks that the bespoke strategy
sometimes solves in under 100 inputs but sometimes requires over 10,000 inputs, leading
to an average slightly above the 0.1 second threshold; as before, LeanCheck does not
experience this variability.

A note about memory usage. LeanCheck is documented4 to be memory intensive, espe-
cially when run for prolonged periods of time, as we do here. Our experiments using
LeanCheck were conducted on a server with plenty of memory, allowing us to complete
trials without issues. Future work might consider the relative space complexities of different
frameworks.

4 https://github.com/rudymatela/leancheck/blob/master/doc/memory-usage.md

https://github.com/rudymatela/leancheck/blob/master/doc/memory-usage.md
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4.2 Exploring Sized Generation

We next explore the sensitivity of bug-finding to various parameters, starting with input
size.

A significant part of generator tuning is ensuring that the generated inputs are well sized.
Conventional wisdom in random testing posits that there is a “combinatorial advantage” to
testing with large inputs, since they can exercise many program behaviors at once; tools like
QuickCover (Goldstein et al., 2021) capitalize on this notion to make testing more efficient.
But are large inputs always better? We used our BST workload to investigate.

We conducted this experiment on the QuickCheck framework, using a bespoke strategy
to focus attention on the quality of the distribution of valid inputs. We used a generator
from Hughes (2019), which generates a list of keys and then inserts each key into the tree,
because it gives precise control over final tree sizes. We choose the keys for a 𝑛-node tree
from a range of integers 1 to 2𝑛. This range is large enough to allow for sufficient variety
in shape and content but not so large that a randomly generated key is unlikely to be in the
tree.

We then measured the bug-finding effectiveness of the generator at different sizes 𝑛.
Thanks to Etna’s flexibility, we could vary the size in the script and otherwise treat this
experiment as we would any other where we wanted to compare several strategies.

Results. Figure 2 plots the size of the tree versus the average number of inputs to solve
a task; each trace represents one task. Some noteworthy traces, highlighted in black, are
discussed below.

Fig. 2: Number of generated inputs (averaged
over 100 trials) to solve each BST task, as
input size increases from three to 30 nodes.

Larger trees can be worse for bug-
finding, for properties that rely on
dependencies between their inputs. We
found that, for BST, small trees were
generally sufficient to find bugs, and
performance got significantly worse for
some tasks as trees got larger.

For example, task #1, which has
the steepest upward curve, involves a
mutant where the delete function fails
to remove a key unless that key happens
to be the root. The property takes one
tree and two keys as inputs and checks
that removing the keys in either order
leads to the same result. Together, these
mean that the task is only solvable when
one key k is the root of the tree and the
other key k’ becomes the root after deleting k. The probability of satisfying this condition
decreases as the size of the tree increases, so larger trees take more inputs to solve this task.

Task #2 is a similar story. It takes a tree and two key-value pairs; this time, the task is only
solvable when the two keys are the same (and the two values are different), a probability
that is inversely proportional to the size of the tree. These two tasks demonstrate situations
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where the inputs to a property need to be related in a mutant-specific way, and large trees
are less likely to satisfy this dependency relationship.

Not all tasks with dependencies between their inputs are harder to solve with larger
trees. Unlike #1 and #2, the curve for task #3 is mostly flat, even though it has a similar
dependency. The mutant here causes the union operation to fail by occasionally preferring
the wrong value if both trees contain the same key; the property takes a key k and two trees
and checks that k exists in the union of the trees when it exists in either tree. Since this
mutant causes problems with keys that appear in both trees, the property only fails when k
is in the input trees. That is, there is a dependency between the inputs, but this dependency
does not scale with the size of the tree.

Discussion. We have seen that larger inputs sometimes not only fail to provide a combi-
natorial advantage but in fact can provide a dependency disadvantage. The size of the main
input — in this case, the tree — cannot be evaluated in a vacuum. Instead, the particulars of
the mutant and property can lead to dependencies between the property inputs that must be
satisfied in order to detect the mutant. Our size exploration is thus a cautionary tale: PBT
users should not naively expect that larger inputs are better, especially for properties with
multiple inputs.

This exploration suggests a few recommendations for improving both testing frameworks
and individual users’ choices of properties. (1) Do not treat property inputs as independent.
The difficulties with the above properties arise, in part, because QuickCheck automates
generation of multiple inputs by assuming that each input can be generated independently —
but treating inputs independently can lead to unintuitive testing performance. Frameworks
like Hedgehog explicitly avoid introducing a generator typeclass so as to force users to build
generators by hand; our results lend credence to that design choice. (2) Think carefully about
properties with multiple inputs. Testers should prefer properties with fewer inputs where
possible. When this is infeasible, testers should think carefully about potential interactions
between their property’s inputs and write generators that take those interactions into account.

4.3 Enumerator Sensitivity

Papers about enumeration frameworks sometimes speak of enumeration as a kind of exhaus-
tive testing — validating the program’s behavior within a “small scope” (Andoni et al.,
2002). But realistic testing budgets often mean that exhausting all inputs up to some inter-
esting size or depth is not possible: enumeration is expensive. Thus, the actual performance
of enumeration frameworks like SmallCheck and LeanCheck is impacted by the specific
order in which values are enumerated. In this section we examine some factors that, perhaps
unexpectedly, impact bug-finding performance.

There are many axes along which order could vary. We have explored two: the order of the
inputs to each property and the order of constructors in an algebraic data type. We conduct
this experiment on SmallCheck and LeanCheck, using the BST and RBT workloads where
many of their properties have multiple inputs, including a combination of Trees and Int
keys. One enumeration strategy uses the default properties, with the trees passed in first,
and one uses properties with the trees last — for example, (Tree, Tree, Int) vs. (Int,
Tree, Tree).
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(a) Enumerator performance on the BST and
RBT workloads when the trees are at the start
of the properties (top rows) versus when they
are at the end (bottom rows).

(b) Enumerator performance on the STLC
and FSUB workloads when the constructor
enumeration order aligns with the definition
of the data type (top rows) versus when the
orders are reversed (bottom rows).

Fig. 3: = Naive LeanCheck, = Naive SmallCheck.

Results. We count the number of tasks that are solved by the same framework under
exactly one of the two orderings. The results are shown in Figure 3.

For LeanCheck, the tree-last strategy solved one additional task that the tree-first strategy
did not (completing in about 38 seconds instead of timing out at 60). For SmallCheck,
the tree-last strategy solved 17 more tasks than tree-first, taking between 0.002 and 7
seconds. The low end is especially remarkable: simply by enumerating (Int, Tree,
Tree)s rather than (Tree, Tree, Int)s, SmallCheck finds a counterexample almost
immediately instead of timing out.

Discussion. A deeper dive into the enumeration frameworks to explore these differences
fully would be worthwhile, but what jumps out even from these simple experiments is the
question of sensitivity. The potentially pivotal role of enumeration order in the success or
failure of these strategies means that users of these enumerative frameworks need to be
careful of configuration settings that would be immaterial in their random counterparts. As a
meta point, we put the tree data types at the front of each property as a matter of convention;
it was not until much later that we realized the inadvertent effect on the performance of the
enumerators!

5 Experiments: Rocq

After focusing on the multi-framework landscape of Haskell in the previous section, we
now turn our attention to the single-framework but multi-strategy landscape in Rocq. As
discussed in §3.1, PBT in Rocq revolves around QuickChick (Lampropoulos, 2018), which,
in addition to the type-based and bespoke strategies that we explored in Haskell, provides
two additional options: a specification-driven strategy that derives correct-by-construction
generators from preconditions in the form of inductive relations (Lampropoulos et al.,
2018) and a type-driven fuzzer strategy that combines type-based generation with mutation
informed by AFL-style branch coverage to guide the search toward interesting parts of the
input space (Lampropoulos et al., 2019).

Both papers exemplify the lack of performance comparisons across approaches discussed
in the introduction. First, Lampropoulos et al. (2018) is evaluated in a toy IFC example,
where only the throughput of generators is measured against that of a bespoke generator;
there is no measurement of the effectiveness of the strategy in finding bugs. On the other
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(a) BST (b) RBT

(c) STLC (d) IFC

Fig. 4: Effectiveness of Rocq generation strategies on four workloads.
= Type-based generator, = Type-based fuzzer,

= Specification-based generator ((a) - (c) only), = Variational fuzzer ((d) only),
= Bespoke generator.

hand, FuzzChick (Lampropoulos et al., 2019) is evaluated in the more realistic IFC workload
of Hritcu et al. (2016) that we will reuse later in this section, with systematically injected
mutations that break the enforcement mechanism of a dynamic monitor. Still, multiple
aspects of their strategies were left unevaluated, including their performance on any other
workload.

5.1 Comparison of Fuzzers, Derived Generators, and Handwritten Generators

We aim to fill the evaluation gaps described above. How do QuickChick’s newer strategies
compare with the more established bespoke and type-based ones? In particular, are they
effective at uncovering bugs across disparate workloads?

We again use the BST, RBT, and STLC workloads, along with a more complex case study,
IFC, pulled from the FuzzChick paper. For the first three case studies, inductively defined
specifications are widely available (e.g. in Software Foundations (Pierce, 2018)); for IFC,
such specifications do not exist, so the specification-driven generators of Lampropoulos
et al. does not apply.

Results. In Figure 4, we visualize the results of the experiments with a task bucket chart.
Results for the simple BST workload (Figure 4a) establish a baseline level of confidence
for all four methods, as they are all able to solve most tasks quickly. Indeed, most of the
tasks are solved by all methods within 0.1 seconds (the darkest color), with the exception
of the type-based fuzzer, which falls short on a few tasks.

Specification-derived strategies are on par with bespoke ones. In the harder RBT work-
load, with its much more complex invariant, there is a clear performance gap between
type-driven strategies (type-based generator and type-based fuzzer) and precondition-driven
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methods (specification-based generator and bespoke generator). Precondition-driven meth-
ods are able to solve more tasks under 0.1 seconds than type-driven methods are able to
solve within a 60 second timeout. The type-based generator fails to solve 23 tasks, and
the type-based fuzzer fails to solve 25. The bespoke generator solves all tasks in under ten
seconds, and the specification-based generator solves all but 10 tasks. We see a similar
pattern in the STLC workload, with the precondition-driven methods outperforming the
type-driven ones.

Fuzzers exhibit more variance but outperform type-driven methods for sparse precondi-
tions. For the IFC workload, the only precondition-driven strategy is the bespoke generator,
which emerges as a clear winner: noninterference is a property with a very sparse pre-
condition, and type-based methods are basically unable to generate valid inputs. For this
particular workload, we included another fuzzing variant borrowed from the original paper
that introduced FuzzChick (Lampropoulos et al., 2019) to strengthen the connection to the
existing literature: rather than generating a pair of input machines completely at random
and then fuzzing the pair (as in the type-based fuzzer approach), we generate one input
machine and copy it to create a pair that is indistinguishable by default. The two fuzzers,
type-based fuzzer and variational fuzzer, have a clear advantage over the pure type-based
generation approach: the ability to guide generation allows fuzzers to discover parts of the
input space that naive type-based generation are simply unable to reach.

Fig. 5: Tasks solved within the timeout in
one or more trials.

Empty = Type-based generator.
= Type-based fuzzer,
= Variational fuzzer,
= Bespoke generator.

Yet fuzzers are not reliable in this
sense, as Figure 5 shows: if we include
partially solved tasks, fuzzers outper-
form their generator counterparts. This
further clarifies the picture painted by
the first set of comparisons. Fuzzers
may get stuck following program paths
that will not lead to interesting reve-
lations, but sometimes discover paths
that a traditional type-based generator
could never hope to reach. In particular,
roughly 30 tasks are solved at least once
through 10 runs (Figure 5), but less than
10 tasks are fully solved (Figure 4d).

Another interesting observation is
that even though fuzzers typically spend
more time per generated input, as the underlying types are more complex and large, mutat-
ing the input takes less time than generating a new one. For IFC, the type-based generator
takes four times longer per input than the type-based fuzzer.

5.2 Validation and Improvement of Fuzzers

Despite its minimal evaluation, the conclusion of Lampropoulos et al. (2019) seems to
hold — that is, FuzzChick shows promise compared to type-based approaches, but has a
long way to go before catching up with the effectiveness of precondition-driven ones. This
led us to wonder, could we further improve the performance of FuzzChick using Etna?
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We focused on two different aspects of fuzzing: size and feedback. FuzzChick’s generation
strategy started small but quickly increased to quite large sizes, relying on the idea of
“combinatorial advantage” discussed in §4.2 — i.e., that larger inputs contain exponentially
many smaller inputs and are therefore more effective for testing. As we saw there, that is not
always the case. After realizing this, we switched to a more gently increasing size bound
which led to significant improvements in terms of throughput, positively impacting our
bug-finding ability.

With respect to feedback, by using Etna to evaluate FuzzChick across multiple workloads
we were able to identify, isolate, and fix a bug that caused it to saturate the seed pool with
uninteresting inputs. FuzzChick (like Zest (Padhye et al., 2019)) keeps two seed pools:
one for valid and one for invalid inputs. FuzzChick’s bug applied to the latter one, and
was hidden from its authors as the variational fuzzer strategy they employed readily gives
access to valid inputs (which are prioritized).

Results. Figure 6 demonstrates the bug-finding capabilities of the original (top) and
tuned (bottom) versions of FuzzChick across the new workloads. The tuned version clearly
outperforms the original in all cases—and is what was used in the previous section.

(a) BST (b) RBT

(c) STLC

Fig. 6: Comparison of the original FuzzChick (top) with the tuned one (bottom).

Hardening QuickChick’s Implementation. In our experimentation with Etna, we stress
tested some of QuickChick’s features in ways that occasional user interactions could not
hope to reach. One particular bug stood out: The main fuzzing loop of FuzzChick is written
in Gallina and uses a natural number fuel to satisfy the termination checker. That natural
number is extracted as an OCaml integer for efficiency purposes. However, when extracted,
a pattern match becomes a call to an eliminator:

Fixpoint loop fuel ... :=

match fuel with

| O => (* base *)

| S fuel’ => (* rec *)

end.

let rec loop fuel ... = (fun fO fS n ->

if n = 0 then fO () else fS (n-1))

(fun () -> (* base *))

(fun fuel -> (* rec *))

fuel

Can you spot the problem? The extracted version is no longer identified by the OCaml
compiler as tail recursive... which means that when Etna used large fuel values, it led to
stack overflows!
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(a) BST (b) RBT

(c) STLC

Fig. 7: Effectiveness of OCaml generation strategies on three workloads. The first and second
buckets for each framework represent the bespoke and type-based generators respectively.

= QCheck, = Crowbar (Random), = Crowbar (AFL), = Base quickcheck.

6 Experiments: OCaml

Whereas QuickChick is the defacto property-based testing framework in Rocq, program-
mers in OCaml have a choice of frameworks: QCheck, offering a standard QuickCheck-like
monadic API for writing generators; Crowbar, offering fuzzing capabilities as a wrapper
around AFL; and Base quickcheck, leveraging the Core standard library replacement.

For the workloads, we ported the three basic ones from the previous sections—BST,
and RBT, and STLC—to OCaml. As neither of the three frameworks provides machinery
for automatically deriving either type-based (in the style of Haskell’s generic-random)
or specification-based (in the style of Rocq’s QuickChick) generators, we also ported a
type-based and a bespoke generator to each framework.
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Controlling for Size As our experiments earlier in the paper showed, the size of generated
inputs can have a significant impact on the effectiveness of testing. However, the three
OCaml frameworks offer vastly diverse default size distributions. In particular, the one
for Base quickcheck was similar to the effective ones from §4.2, so we left it as is. For
QCheck, to avoid generating a distribution that is heavily bimodal (i.e. with many trees
containing one or two nodes and most others containing several thousand) or where the
range of integers is too large (to provoke bugs that rely on collisions), we used the variants of
QCheck’s integer generators that focus on smaller integer ranges. Finally, for Crowbar, the
default behavior of its list generator (which we use as a basic building block in multiple
strategies) produces very small lists5. As a result, we re-implemented a list generator using
the rest of Crowbar’s API to construct longer lists.

Figure 7 shows the results in bucket-chart form, where we used type-based and bespoke
generators for each of the frameworks, using Crowbar both with its purely random and
AFL-powered backends. For these workloads, the Core-library powered Base quickcheck
bespoke generators outperform the other frameworks in almost all situations. The best
generator that we could write using Crowbar’s interface, performed the worst out of the
strategies we tried. However, that does not mean that Crowbar as a framework is less
effective: rather, just as the FuzzChick case (§5.1), if one takes the effort to handcraft
bespoke generators that satisfy a property’s precondition by construction, coverage-guided
fuzzing only adds overhead for minimal gain.

7 Experiments: Cross-Language Comparison of PBT Frameworks

As we demonstrated throughout this paper, Etna allows for running complex experiments
that can provide powerful insights to property-based testing practitioners or framework
developers. However, the scope of the experiments we have provided thus far has been
limited to the level of a single programming language. Given two testing frameworks
or generation strategies within the same language, we can measure and compare their
bugfinding performance across the different Etna workloads implemented for that language.

Yet, such inter-language experimentation does not encompass the current practice of
property-based testing, where generation strategies in one language are used to test systems
in another. For one example, a specification-derived generator for well-typed System F
terms written in Rocq was used to test a higher-order blockchain language implemented
in OCaml (Hoang et al., 2022); for another, a bespoke generator for file-system inter-
actions written in Erlang were used to test Dropbox’s Python-based file synchronization
service (Hughes et al., 2016).If we want Etna to enable prototyping of and experimentation
with effective testing strategies in practice, we need to be able to compare the performance
of such strategies across languages.

To that end, we developed support to perform cross-language experiments in Etna,
decoupling generation of inputs and testing of properties. On the generation side, each
aspiring Etna user must implement their generation strategy, just like before, but instead

5 Given an input size, it will generate an empty list 50% of the time, or a cons cell whose tail is recursively
generated with the size parameter halved. In practice, that means vanishingly few lists of length more than 5
will be generated even for large input sizes.



829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

Journal of Functional Programming 19

(a) BST (b) RBT (c) STLC

Fig. 8: Generation time to failure for bespoke generators written in different languages.
= Haskell – QuickCheck, = Rocq – QuickChick, = OCaml – QCheck,

= Racket – Rackcheck, = Rust – QuickCheck.

of linking it directly with a framework-dependent way of executing a test, they need to
only output a list of serialized inputs together with the time it took to generate each one.
On the property end, we have created runners for the BST, RBT, and STLC workloads
that can read serialized inputs from the command line to test their related properties with.
Etna can then perform its analysis in a language-agnostic manner: it can give precise, fine-
grained feedback about the performance of each generation strategy (without aggregating
generation, execution, or shrinking times together).

As a beneficial side effect of decoupling strategies from workloads, the extensibility
of Etna is greatly improved. Integrating a new language within Etna no longer requires
porting all of its workloads in yet another language—although that is still an option.
Instead, workloads only need to be implemented once, in any language that can deserialize
inputs to interface with Etna’s API. And strategies written in a previously unsupported
language need only implement a generator and a serializer to use the existing workloads
for experimentation. Moreover, the decoupled approach to generation and testing allows for
quick validation of ports of strategies and workloads to new languages: if running the same
generator produces different results in the cross-language mode than inter-language mode,
that points towards an error in the implementation of the workload or the strategy.

To demonstrate Etna’s new capabilities, we pit bespoke generators written in Haskell,
Rocq, Ocaml, Racket, and Rust against the three workloads. The results are shown in
Figure 8. As we are dealing with tuned bespoke generators, bucket charts are not ideal for
discerning differences—all generators find basically all bugs, quickly. Instead, the top of
the figure shows the total generation time to failure per-framework per-workload.
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Despite all bespoke generators implementing the same strategy in principle, there are
slight differences in efficiency: the way each framework manipulates the size of generated
inputs across runs and the performance characteristics of the language both affect the end
result. Still, all strategies are relatively close, with Rust’s QuickCheck, for example, being
simultanously the fastest in the BST and RBT workloads, and the slowest in STLC (we
conjecture because of excessive creation of expensive closure’s in binds).

Another takeway from Figure 8 is the difficulty of the workloads themselves: BST is
comprised of 52 tasks, and the slowest generator (Haskell’s QuickCheck) still finds all 52
injected bugs in 130ms; on the other hand, STLC is comprised of only 20 tasks, but the
fastest generator (Rocq’s QuickChick) takes 300ms, where the slowest takes just over 2
seconds.

Moving forward, armed with cross-language evaluation capabilities and only needing
to implement runners once, we hope to rapidly expand the number of workloads and
frameworks available for experimention.

8 Related and Future Work

The future directions we imagine for Etna are inspired by related work in the literature.
Thus, we discuss both related and future work together in this section.

Etna’s name, referencing every crossword-puzzler’s favorite Italian volcano, was
inspired by two existing benchmark suites in the fuzzing space: LAVA (Dolan-Gavitt
et al., 2016) and Magma (Hazimeh et al., 2020). Both provide a suite of workloads that can
be used to compare different fuzzing tools: LAVA’s workloads consist of programs with
illegal memory accesses that are automatically injected, while Magma relies on real bugs
forward-ported to the current versions of libraries. More recently, FixReverter (Zhang et al.,
2022) offered a middle ground, generalizing real bug-fixes into patterns and applying them
to multiple locations in a program. Etna is different from these suites in a few ways. First,
Etna aims to be a platform for exploration and evaluation rather than a rigid set of bench-
marks. Thus, we do not claim that Etna’s workloads are complete — instead, we intend
for users to add more over time. Additionally, evaluating fuzzing is quite different from
evaluating PBT, since PBT is expected to run for less time on programs with higher input
complexity. This means that Etna’s measurement techniques and workload focus must
necessarily be different from LAVA’s or Magma’s. Still, there are ideas worth borrowing
from these suites: fuzzing benchmarks generally record code-coverage information, which
we plan for Etna to eventually offer as well.

Besides LAVA and Magma, there is a massive literature of Haskell and Rocq papers from
which we will continue to draw both workloads and frameworks. With the help of the com-
munity, we hope Etna will eventually include frameworks like: Luck (Lampropoulos et al.,
2017), a language for preconditions from which generators can be inferred; FEAT (Duregård
et al., 2012), an enumerator framework focusing on uniformity; tools for deriving better
Haskell generators (Mista and Russo, 2021, 2019); and specification-driven enumerators
for QuickChick (Paraskevopoulou et al., 2022).

Outside of the currently supported languages and frameworks, there are yet more oppor-
tunities for growth.We will solicit framework maintainers and researchers to add support
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for other languages such as Scala (SciFe (Kuraj and Kuncak, 2014; Kuraj et al., 2015) and
ScalaCheck (Nilsson, 2019)), Erlang (QuviQ (Arts et al., 2008) or PropEr (Papadakis and
Sagonas, 2011)), or Isabelle (Bulwahn, 2012𝑎,b).

Finally, the presentation back end of Etna is fit-for-purpose, but we intend to do further
research into the best possible ways to visualize PBT results. Consulting experts in human-
computer interaction, we plan to use tools like Voyager (Wongsuphasawat et al., 2017)
to explore which kinds of outcome visualizations real users of Etna want. At the very
least, integrating Etna into a Jupyter notebook (Jupyter, 2023) and providing hooks into
a powerful graphics engine like Vega-lite (Satyanarayan et al., 2017) would make it easier
for users to experiment with visualizations.

9 Conclusion

We designed Etna to meet a concrete need in our research — we needed a clear way to
convince ourselves and others that the PBT tools we build are worth pursuing. Etna provides
that, with an extensible suite of interesting workloads and the infrastructure necessary to
validate and refine designs against them. In §4 - §7, we originally set out to answer
straightforward questions about whether X is better than Y, and while we did get feedback
about general trends, we also uncovered some unexpected nuances of the testing process.
PBT-curious readers may have further questions building upon and extending beyond our
explorations. Etna is there for you!
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