
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, ?? pages, 2022. © Cambridge University Press 2022 1
doi:10.1017/xxxxx

Etna: An Evaluation Platform for Property-Based
Testing

ALPEREN KELES
University of Maryland, College Park, MD, USA

JESSICA SHI
University of Pennsylvania, Philadelphia, PA, USA

NIKHIL KAMATH
University of Maryland, College Park, MD, USA

TIN NAM LIU
University of Pennsylvania, Philadelphia, PA, USA

CEREN MERT
University of Maryland, College Park, MD, USA

HARRISON GOLDSTEIN
University of Pennsylvania, Philadelphia, PA, USA

BENJAMIN C. PIERCE
University of Pennsylvania, Philadelphia, PA, USA

LEONIDAS LAMPROPOULOS
University of Maryland, College Park, MD, USA

Abstract

Property-based testing is a mainstay of functional programming, boasting a rich literature, an enthu-
siastic user community, and an abundance of tools — so many, indeed, that new users may have
difficulty choosing. Moreover, any given framework may support a variety of strategies for generating
test inputs; even experienced users may wonder which are better in any given situation. Sadly, the PBT
literature, though long on creativity, is short on rigorous comparisons to help answer such questions.

We present Etna, a platform for empirical evaluation and comparison of PBT techniques. Etna
incorporates a number of popular PBT frameworks and testing workloads from the literature, and
its extensible architecture makes adding new ones easy, while handling the technical drudgery of
performance measurement.

To illustrate its benefits, we use Etna to carry out several experiments with popular PBT approaches
in Rocq, Haskell, OCaml, Racket, and Rust, allowing users to more clearly understand best practices
and tradeoffs.



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 LATEX Supplement

1 Introduction

Haskell’s QuickCheck library popularized property-based testing (PBT), which lets users
test executable specifications of their programs by checking them on a large number of
inputs. In fact, QuickCheck made PBT so popular that Claessen and Hughes’s seminal
paper [2000] is the most cited ICFP paper of all time by a factor of two, according to the
ACM Digital Library. PBT tools can now be found in languages from OCaml (Cruanes,
2017; Dolan, 2017) and Scala (Nilsson, 2019) to Erlang (Arts et al., 2008; Papadakis
and Sagonas, 2011) and Python (MacIver, 2016), not to mention proof assistants like
Rocq (Lampropoulos and Pierce, 2018), Agda (Lindblad, 2007), and Isabelle (Bulwahn,
2012𝑎).

Many aspects of PBT impact its effectiveness, from the properties themselves (Hughes,
2019) to counterexample minimization (Maciver and Donaldson, 2020), but arguably the
most crucial one is the algorithm for generating test inputs. Papers citing QuickCheck often
retain its distinctive style of random test-case generation, but many other options have
been explored. In particular, enumerative PBT has also become a staple in the functional
programming community (Runciman et al., 2008; Braquehais, 2017), and tools for feedback-
based PBT are gaining ground (Lampropoulos et al., 2019; Dolan, 2017; Löscher and
Sagonas, 2017). Each of these approaches comes with benefits and tradeoffs, and choosing
one over another can make a big difference on testing effectiveness.

Even after selecting a generation style — say, random PBT — one may be left with
quite a few options of framework, each with its own unique style. In Haskell, for example,
both QuickCheck and Hedgehog (Stanley, 2019) are quite popular. And even after selecting
a framework — say, QuickCheck — there are yet more options for choosing a specific
generation strategy. Tools like generic-random (Xia, 2018) and DraGEN (Mista and Russo,
2021) can derive QuickCheck generators from type information, offering a quick and
accessible entrypoint to PBT, but their effectiveness suffers when inputs need to satisfy
more complex semantic constraints. Alternatively, one can write a bespoke generator that
is “correct by construction,” producing only valid test inputs. Such bespoke generators can
sometimes become quite sophisticated (Palka et al., 2011; Midtgaard et al., 2017; Hritcu
et al., 2016). And there are other options: for example, QuickChick, Rocq’s variant of
QuickCheck, can derive specialized generators for free from specifications expressed as
inductive relations (Paraskevopoulou et al., 2022). Nuances of the properties under test
may make strategies more or less preferable, and considerable experience may be required
to make a good choice.

Moreover, even after selecting a particular way of using the tool — say, writing a
bespoke generator — there are yet more options: a given generator can typically be tuned
to produce different sizes and shapes of data. For example, QuickCheck generators can
be parameterized both globally by a size parameter and locally by choices like numeric
weights on the arguments to various combinators.

In the existing literature, there are plenty of performance evaluations for individual PBT
tools, but a dearth of comparisons across the various available design dimensions. New
tools are typically evaluated on just one or two case studies, often showcasing incomparable
measures of effectiveness. So how is a PBT user supposed to make sense of all these options?



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Journal of Functional Programming 3

How is a tool designer supposed to measure success? How can we turn PBT from an art to
a science?

Answering these questions is the goal of this paper. Our contributions are:

• We present Etna, an extensible platform for evaluating and comparing generation
techniques for PBT, with generic support for measuring performance and presenting
results (§2).1

• We populate Etna with six testing workloads from the literature presenting a range
of bug-finding challenges, with PBT frameworks in Haskell, Rocq, OCaml, Racket,
and Rust, and with various strategies for using each framework (§3).

• We report on our experiences using Etna to make observations about PBT perfor-
mance. Some of these observations lend empirical weight to commonly held beliefs,
while others suggest improvements to existing processes and tools (§4, §5, and §6).

• We extend Etna with support for cross-language experimentation with popular PBT
frameworks in Haskell, Rocq, OCaml, Racket, and Rust (§7), enabling, for the first
time, precise comparisons of generator efficiency and effectiveness across languages.

We discuss related and future work in §8.

2 Platform Design

The central purpose of Etna is to give researchers, library authors, and expert PBT users
an extensible platform for experimenting with their testing strategies. In this section, we
outline our design principles and the rationale behind them. Then we describe the Etna
architecture and finish with a discussion and depiction of communicating with Etna as
a user. Before all that, however, we’ll begin by providing background on the generation
strategies themselves.

2.1 Background: Property-Based Testing and Generation Strategies

A key difference between approaches to PBT is how each deals with preconditions. Consider
binary search trees, where each node value is greater than everything to its left and less
than everything to its right. In Haskell syntax:

data Tree k v = Leaf | Node (Tree k v) k v (Tree k v)

isBST :: Tree k v -> Bool

insert :: k -> v -> Tree k v -> Tree k v

What properties should we expect to hold for operations on BSTs such as isBST and
insert? Hughes thoroughly answers this question in his guide to writing properties of
pure functions [2019]. For instance, one desirable property is that if we insert a key into a
valid BST, then it should remain a valid BST:

1 Etna is publicly available at https://github.com/alpaylan/etna-cli.

https://github.com/alpaylan/etna-cli


139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 LATEX Supplement

prop_InsertValid :: Tree Int v -> Int -> Property

prop_InsertValid t x = isBST t ==> isBST (insert x t)

Here ==> encodes a precondition. That is, the insert function is only exercised when the
binary tree t satisfies the isBST predicate; otherwise, the property is vacuously true.

There are many ways to generate data for properties like this. A simple approach is to
straightforwardly follow the structure of the types to generate arbitrary trees and filter out the
ones that are not BSTs. While simplistic, this approach works well in some circumstances.
In fact, for the BST example, such type-driven approaches can find all bugs introduced
in Hughes’s guide to writing properties of pure functions [2019]. But this generate-and-
filter approach breaks down with “sparse” preconditions that are harder to satisfy randomly;
for instance, valid red-black trees are harder to generate at random than valid BSTs, so type-
driven strategies work less well (see §4 and §5). For yet sparser preconditions, such as C
programs with no undefined behaviors (Yang et al., 2011), such an approach is hopeless.
On the other end of the spectrum, users can write bespoke generators: programs that are
manually tailored to produce the desired distribution. Such programs can be extremely
effective in finding bugs when the inputs satisfy the precondition by construction, but they
can also be extremely difficult to write. A well-crafted such generator can in fact be a
significant research result: such is the case for many well-typed term generators in the last
decade (Palka et al., 2011; Midtgaard et al., 2017; Hoang et al., 2022; Frank et al., 2024).
Naturally, there are also approaches in the middle. For instance, some use the structure of
the precondition to produce valid data directly (Bulwahn, 2012𝑏; Claessen et al., 2014;
Fetscher et al., 2015; Lampropoulos et al., 2017, 2018), while others leverage feedback to
guide generation towards valid or otherwise interesting inputs (Löscher and Sagonas, 2017;
Löcher and Sagonas, 2018; Lampropoulos et al., 2019).

2.2 Design Principles

Etna is desinged to help researchers and framework developers quickly experiment with
different options for PBT data generation. During Etna’s development, we focused on a
few key design principles, centered around usefulness, extensibility, and maintainability.

2.2.1 Evaluate for the ground truth, not for proxy metrics.

How do we measure the effectiveness of a generator? The software testing literature offers
two main answers: code coverage and mutation testing. Code coverage is popular, but
problematic: higher coverage does not always translate to better bug finding (Gopinath
et al., 2014; Klees et al., 2018). We instead choose mutation testing (Jia and Harman, 2011),
which measures the effectiveness of testing by artificially injecting mutations to the system
under test and checking if testing is able to detect them. Mutations in the literature (Hazimeh
et al., 2020; Klees et al., 2018; Zhang et al., 2022; Hritcu et al., 2016) fall on a spectrum
from manually sourced to automatically synthesized. We opt for manual sourcing, allowing
us to more readily maintain ground truth and ensure that every mutant violates some aspect
of the property specification. Etna supports a terse syntax for incorporating these mutants
into the systems under test. In §3, we detail the systems evaluated in this paper.



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

2.2.2 Use minimal, but precise interfaces.

A key challenge during Etna’s development is that it needs to gather data about the testing
effectivenes of a wide variety of existing frameworks, each of which reports such data in
an ad-hoc non standardized manner: Most framework only report the number of inputs that
were generated before a counterexample was found; very few offer timing statics; none
offer a detailed breakdown of generation, testing, or minimization time. Similarly, most
frameworks report the number of inputs that fail to satisfy a precondition as discards; some
(like Rust’s QuickCheck and Racket’s RackCheck) do not. Most frameworks allow for
setting a limit on the number of tests; very few allow for setting such time limits. Moreover,
any printing of such data is optimized for human readability—with little to no consideration
to how machine-readable this output is.

To tame this diversity, we settled on a set of metrics for PBT frameworks that are easily
measurable, and on a precise output format that developers can adhere to: JSON defined
using a schema that frameworks can validate themselves on. We built adaptors to that
schema for frameworks across multiple languages (§7).2

2.2.3 Every Etna capability should be available to use manually

Etna acts as an orchestration mechanism that invokes testing tools, parses their results, and
performs analysis on them. Such orchestration is, even with the best of intentions, fragile as
a result of loosely coupled independently developed systems working together. In turn, as
we found out from experience, any opaqueness in this process can result in unrecoverable
failures. The final guiding principle of Etna is to ensure not just that such opaqueness
doesn’t exist, but that users can also reproduce the steps of any Etna experiment manually,
if they so wish.

2.3 Terminology

Our mutation-testing based evaluation is built upon tasks: a mutant-property pair where
the mutant causes the property to fail. As any given program can give rise to multiple
tasks — it might need to satisfy multiple properties or be subjected to multiple mutants —
we organize tasks into workloads. Each workload comes with several components: data
type definitions; variant implementations of functions using these types; and a property
specification of these functions.

We call a PBT paradigm at the level of a library a framework, which should contain
functions for (a) constructing properties, (b) constructing generators, and (c) running tests.
For instance, QuickCheck, QuickChick, SmallCheck and LeanCheck are all examples of
frameworks. And we call a PBT paradigm at the level of how to use a framework to write
generators a strategy. Examples of such strategies include type-based random generation,
manually written bespoke generation, or exhaustive enumeration of the input space.

2 https://github.com/alpaylan/etna-cli/blob/main/PROTOCOL.md

https://github.com/alpaylan/etna-cli/blob/main/PROTOCOL.md


231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 LATEX Supplement

2.4 Using Etna

Etna is designed to be an extensible platform that flexibly accommodates new workloads,
strategies, frameworks, and languages, built with inspiration from modern package man-
agers such as Cargo [2018]. At its core is an experiment driver that provides three main
pieces of functionality: (a) toggling between variant implementations in a directory of
workloads; (b) compiling and running each strategy on each task; and (c) analyzing the
results.

Users interact with Etna by creating such experiments: projects that can host multiple
tests, pull workloads from Etna and modify them as the users wish, holding the raw data
produced by experimentation, the analysis results and figures.

To replicate one of the existing experiments, the users can either reuse the experiment
repository that holds the tests and experimentation scripts for this paper or create a new
experiment from scratch, potentially reusing existing workload/strategy pairs.

To evaluate a new generation strategy if the framework is already supported, they only
need to extend one of the existing experiment scripts to include their new strategy. If the
framework is not supported, they need to first implement an adaptor for the framework that
provides the information the CLI requires, following the existing examples of Haskell, Rocq,
OCaml, Racket, or Rust. The adapters follow a schema available at the Etna repository.

Finally, to contribute a new workload, users can implement the system under test just as
they would ordinary code in a supported language. Then, they can then encode mutants via
special comment syntax embedded within the implementation. For example, consider the
following implementation of insert, together with a triggerable bug, in Haskell syntax:

insert k v E = T E k v E

insert k v (T l k’ v’ r)

{-! -}

| k < k’ = T (insert k v l) k’ v’ r

| k > k’ = T l k’ v’ (insert k v r)

| otherwise = T l k’ v r

{-!! insert_becomes_singleton -}

{-!

| k < k’ = T (insert k v l) k’ v’ r

| otherwise = T l k’ v’ (insert k v r)

-}

{- !-}

The correct (i.e. uncommented) implementation of insert ensures that the search tree
invariant is maintained: every key in the left subtree of a node is smaller than its root,
and every key in the right subtree is greater. In specially marked comments, a mutant is
specified, which triggers a bug if enabled by not considering the case where the key being
inserted is already present in the tree.



277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Journal of Functional Programming 7

2.5 Analysis and Presentation

Though Etna supports customizable
experiments, we choose a standard set
of defaults for the experiments in this
paper. We run each strategy on each task
for a set amount of trials (10 unless oth-
erwise specified) and with a set timeout (60 seconds). We then measure if the strategy was
able to solve the task, i.e. find the injected bug in all trials within the given time frame.
Multiple trials account for the non-determinism of random generation strategies, and results
are simple averages unless indicated otherwise.

Our first attempts at presenting this data were hard to interpret: what does it mean,
for example, if one strategy takes an average of two seconds and the other an average of
three? Rather than present a slew of raw numbers, we wanted a data representation that
captures a user’s experience of interacting with PBT tools, so that visual differences in
the representation correspond to tangible differences in performance. The figure above
demonstrates our solution: a task bucket chart. For every strategy we classify tasks ranging
from “solved instantly” to “unsolved”, depicted with progressively lighter shades. For
example, for the strategy/workload combination in the figure, 14 tasks are solved very
quickly (the darkest shade) while four are not solved at all (the lightest).

In case a task bucket chart does not show enough detail, especially in head-to-head
comparisons, we also support statistical analyses like Mann–Whitney U tests3 (see §4.1).

3 Populating the Platform

We have integrated a number of PBT frameworks and workloads into Etna, both for our
own use in §4 - §7 and for potential users to use and compare against.

3.1 Languages and Frameworks

Haskell is an obvious starting point: as the language that hosts QuickCheck, it is the lingua
franca of PBT research. We focus on three Haskell frameworks: QuickCheck, of course;
SmallCheck (Runciman et al., 2008), a competitor to QuickCheck that does enumerative
testing; and LeanCheck (Braquehais, 2017), a more modern enumerative framework.

Our second language of choice is Rocq. While Haskell is blessed with many PBT
frameworks, PBT in Rocq is built on a single framework: QuickChick (Lampropoulos and
Pierce, 2018). However, QuickChick is a rich ecosystem that supports a variety of different
strategies for input generation (Lampropoulos, 2018; Lampropoulos et al., 2018, 2019), so
there is plenty to study and compare.

The third language we focus on is OCaml. Like Haskell, OCaml users can reach of a
variety of random testing frameworks, from QuickCheck variants (QCheck (Cruanes, 2017)
or base quickcheck (Street, 2019)) to AFL-powered fuzzers like Crowbar (Dolan, 2017)).

3 The Mann–Whitney U test is a nonparametric test that compares data samples from two different distributions.
We use it here because it makes no assumptions about the distributions being compared.



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 LATEX Supplement

For these three languages, we perform intra-language experiments comparing different
generation strategies (§4, §5, §6). We will also show how to perform cross-language
experiments with Etna (§7), using strategies both from these languages, as well as Racket
(using its RackCheck framework (Popa, 2021)) and Rust (using (Gallant, 2014)). Etna’s
extensible design means that adding new languages is straightforward; we discuss languages
that we plan to add to the platform in §8.

3.2 Workloads

Our initial set of workloads is drawn from three application domains that are of practical
interest to the functional programming community and that have featured prominently in the
PBT literature. These workloads feature in the following sections’ experiments, although
not every workload is used for every experiment. A detailed description of each workload,
together with a list of properties and associated mutants, can be found in the repository.

Data Structures. The first workload focuses on a functional data structure that is ubiq-
uitous in the literature: binary search trees. Multiple PBT papers have focused on BST
generation, including John Hughes’s How to Specify It! [2019], an extended introduction
to specifying properties using QuickCheck. Our BST workload ports the mutations and
properties from that paper. The second workload focuses on another popular functional
data structure, red-black trees, including self-balancing insertion and deletion operations
that are notoriously easy to get wrong. RBTs have also been studied in the PBT litera-
ture (Lampropoulos et al., 2017; Runciman et al., 2008; Mista and Russo, 2019; Klein and
Findler, 2009). Our RBT workload combines the BST mutants with additional mutants that
focus on potential mistakes when balancing or coloring the tree.

Lambda Calculi and Type Systems. The third workload centers around a DeBruijn index
based implementation of the simply typed lambda calculus with booleans. Bespoke genera-
tors for producing well-typed lambda terms is a well studied problem in the literature (Palka
et al., 2011; Midtgaard et al., 2017), while the mutations for STLC included in our case study
are drawn from the appropriate fragment of a System F case study (Goldstein et al., 2021),
dealing mostly with mistakes in substitution, shifting, and lifting. For a more complicated
fourth workload F< : revolving around calculi and type systems, we turn to the full case
study of Goldstein et al. (2021) and extend it with subtyping. This allows for significantly
more complex errors to be injected (such as those dealing with type substitution, shifting,
or lifting). Bespoke generators for System F have been the subject of recent work (Goldstein
et al., 2021; Hoang et al., 2022) and can be straightforwardly extended to handle subtyping.
The fifth workload involves a parser and pretty-printer for Lu, a language based on Lua; the
implementation of Lu was drawn from a Haskell course at the University of Pennsylvania.
We specify correctness through a round-trip property: printing a valid Lu expression and
then parsing it should result in the original expression.

Security. The sixth and final workload focuses on a security domain: information flow
control. The IFC case study, introduced by Hritcu et al. (2013, 2016), explores the effec-
tiveness of various bespoke generators for testing whether low-level monitors for abstract
machines enforce noninterference: differences in secret data should not become publicly



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Journal of Functional Programming 9

visible through execution. Violations in the enforcement policies are introduced by system-
atically weakening security checks or taint propagation rules, exploring all possible ways
of introducing such violations.

4 Experiments: Haskell

We next report on our experience using Etna to probe different aspects of testing effec-
tiveness. Our first set of observations are on the PBT frameworks and strategies available
in Haskell.

4.1 Comparing Frameworks

In the first experiment, we assess the “out of the box” bug-finding abilities of three Haskell
frameworks — QuickCheck, SmallCheck, and LeanCheck. We examine four strategies. For
the bespoke strategy, we manually write a QuickCheck generator that always produces test
inputs that satisfy the property’s precondition. This serves as a “topline” for the other strate-
gies: a high-effort generator that solves all of the tasks easily. The other three strategies —
one per framework — are all naive. The QuickCheck strategy uses the generic-random
library to derive its generator automatically, with constructors chosen at each step with
uniform probability and a size parameter that decreases on recursive calls to ensure termi-
nation. For the enumerative frameworks, SmallCheck and LeanCheck, we use combinators
that follow the type structure.

We evaluate these strategies against four workloads: BST, RBT, STLC, and F< :.

Results. We visualize the results of this experiment in Figure 1. Some points to note:
The bespoke strategy outperforms the naive strategies along multiple axes. For example,

looking at the naive QuickCheck strategy (the others are similar), the bespoke strategy
solved all tasks, while the naive strategy failed to solve 43 tasks. Among tasks that both
strategies solved, using a Mann–Whitney U test with 𝛼 = 0.05, we find that the bespoke
strategy’s average time to solve a task was (statistically) significantly lower in 83 out of 124
tasks and the average valid inputs to solve a task were lower for 89 out of 124 tasks. That
is, the bespoke strategy found more bugs, more quickly, and with better quality tests.

Between the two enumeration frameworks, LeanCheck substantially outperforms
SmallCheck on these workloads. LeanCheck had an 82% solve rate, while SmallCheck’s
was only 35%. On one BST task, LeanCheck found the bug in about a hundredth of a
second on average, while SmallCheck required 26 seconds. One reason for these differ-
ences may be that SmallCheck attempts to enumerate larger inputs much earlier. In the first
thousand binary trees, SmallCheck produces trees with up to ten nodes, while LeanCheck
only reaches four nodes. Unsurprisingly, it is harder for larger trees to satisfy the BST
invariant — only 1% of these thousand SmallCheck trees are valid, compared to 13% of
the LeanCheck trees. And across all workloads, we can calculate the rate at which they
enumerate test inputs, by aggregating over the tasks that they both solved and dividing by
the total number of tests by the total time spent. We find that LeanCheck produces over a
hundred times more tests per second than SmallCheck.



415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 LATEX Supplement

(a) BST (b) RBT

(c) STLC (d) F< :

Fig. 1: Effectiveness of Haskell generation strategies on four workloads.
= Naive QuickCheck, = Naive LeanCheck,

= Naive SmallCheck, = Bespoke QuickCheck.

LeanCheck also outperforms naive QuickCheck. It is illuminating to consider failed tasks
that were partially solved: the bug was found in at least one trial and not found in at least
one trial. There is one such task for LeanCheck and 14 for QuickCheck. For LeanCheck’s
partially solved task, the inputs required are the same for each trial, but the time fluctuates
between 55 and 65 seconds. That is, this is a situation where a task nears — and sometimes
exceeds — what LeanCheck can reach with the one minute time limit. QuickCheck’s
partially solved tasks are also interesting. Of the 13 that LeanCheck solves but QuickCheck
does not, 10 are partially solved by QuickCheck. This suggests that there are situations where
a deterministic approach may be more reliable than a random alternative: LeanCheck solves
these tasks consistently and relatively quickly, while QuickCheck sometimes takes less than
a second, sometimes nearly a minute, and sometimes times out.

Similarly, in STLC, naive LeanCheck solves three more tasks within the first bucket
than the bespoke strategy. Upon closer inspection, these are tasks that the bespoke strategy
sometimes solves in under 100 inputs but sometimes requires over 10,000 inputs, leading
to an average slightly above the 0.1 second threshold; as before, LeanCheck does not
experience this variability.

A note about memory usage. LeanCheck is documented4 to be memory intensive, espe-
cially when run for prolonged periods of time, as we do here. Our experiments using
LeanCheck were conducted on a server with plenty of memory, allowing us to complete
trials without issues. Future work might consider the relative space complexities of different
frameworks.

4 https://github.com/rudymatela/leancheck/blob/master/doc/memory-usage.md

https://github.com/rudymatela/leancheck/blob/master/doc/memory-usage.md


461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

4.2 Exploring Sized Generation

We next explore the sensitivity of bug-finding to various parameters, starting with input
size.

A significant part of generator tuning is ensuring that the generated inputs are well sized.
Conventional wisdom in random testing posits that there is a “combinatorial advantage” to
testing with large inputs, since they can exercise many program behaviors at once; tools like
QuickCover (Goldstein et al., 2021) capitalize on this notion to make testing more efficient.
But are large inputs always better? We used our BST workload to investigate.

We conducted this experiment on the QuickCheck framework, using a bespoke strategy
to focus attention on the quality of the distribution of valid inputs. We used a generator
from Hughes (2019), which generates a list of keys and then inserts each key into the tree,
because it gives precise control over final tree sizes. We choose the keys for a 𝑛-node tree
from a range of integers 1 to 2𝑛. This range is large enough to allow for sufficient variety
in shape and content but not so large that a randomly generated key is unlikely to be in the
tree.

We then measured the bug-finding effectiveness of the generator at different sizes 𝑛.
Thanks to Etna’s flexibility, we could vary the size in the script and otherwise treat this
experiment as we would any other where we wanted to compare several strategies.

Results. Figure 2 plots the size of the tree versus the average number of inputs to solve
a task; each trace represents one task. Some noteworthy traces, highlighted in black, are
discussed below.

Fig. 2: Number of generated inputs (averaged
over 100 trials) to solve each BST task, as
input size increases from three to 30 nodes.

Larger trees can be worse for bug-
finding, for properties that rely on
dependencies between their inputs. We
found that, for BST, small trees were
generally sufficient to find bugs, and
performance got significantly worse for
some tasks as trees got larger.

For example, task #1, which has
the steepest upward curve, involves a
mutant where the delete function fails
to remove a key unless that key happens
to be the root. The property takes one
tree and two keys as inputs and checks
that removing the keys in either order
leads to the same result. Together, these
mean that the task is only solvable when
one key k is the root of the tree and the
other key k’ becomes the root after deleting k. The probability of satisfying this condition
decreases as the size of the tree increases, so larger trees take more inputs to solve this task.

Task #2 is a similar story. It takes a tree and two key-value pairs; this time, the task is only
solvable when the two keys are the same (and the two values are different), a probability
that is inversely proportional to the size of the tree. These two tasks demonstrate situations



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 LATEX Supplement

where the inputs to a property need to be related in a mutant-specific way, and large trees
are less likely to satisfy this dependency relationship.

Not all tasks with dependencies between their inputs are harder to solve with larger
trees. Unlike #1 and #2, the curve for task #3 is mostly flat, even though it has a similar
dependency. The mutant here causes the union operation to fail by occasionally preferring
the wrong value if both trees contain the same key; the property takes a key k and two trees
and checks that k exists in the union of the trees when it exists in either tree. Since this
mutant causes problems with keys that appear in both trees, the property only fails when k
is in the input trees. That is, there is a dependency between the inputs, but this dependency
does not scale with the size of the tree.

Discussion. We have seen that larger inputs sometimes not only fail to provide a combi-
natorial advantage but in fact can provide a dependency disadvantage. The size of the main
input — in this case, the tree — cannot be evaluated in a vacuum. Instead, the particulars of
the mutant and property can lead to dependencies between the property inputs that must be
satisfied in order to detect the mutant. Our size exploration is thus a cautionary tale: PBT
users should not naively expect that larger inputs are better, especially for properties with
multiple inputs.

This exploration suggests a few recommendations for improving both testing frameworks
and individual users’ choices of properties. (1) Do not treat property inputs as independent.
The difficulties with the above properties arise, in part, because QuickCheck automates
generation of multiple inputs by assuming that each input can be generated independently —
but treating inputs independently can lead to unintuitive testing performance. Frameworks
like Hedgehog explicitly avoid introducing a generator typeclass so as to force users to build
generators by hand; our results lend credence to that design choice. (2) Think carefully about
properties with multiple inputs. Testers should prefer properties with fewer inputs where
possible. When this is infeasible, testers should think carefully about potential interactions
between their property’s inputs and write generators that take those interactions into account.

4.3 Enumerator Sensitivity

Papers about enumeration frameworks sometimes speak of enumeration as a kind of exhaus-
tive testing — validating the program’s behavior within a “small scope” (Andoni et al.,
2002). But realistic testing budgets often mean that exhausting all inputs up to some inter-
esting size or depth is not possible: enumeration is expensive. Thus, the actual performance
of enumeration frameworks like SmallCheck and LeanCheck is impacted by the specific
order in which values are enumerated. In this section we examine some factors that, perhaps
unexpectedly, impact bug-finding performance.

There are many axes along which order could vary. We have explored two: the order of the
inputs to each property and the order of constructors in an algebraic data type. We conduct
this experiment on SmallCheck and LeanCheck, using the BST and RBT workloads where
many of their properties have multiple inputs, including a combination of Trees and Int
keys. One enumeration strategy uses the default properties, with the trees passed in first,
and one uses properties with the trees last — for example, (Tree, Tree, Int) vs. (Int,
Tree, Tree).



553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Journal of Functional Programming 13

(a) Enumerator performance on the BST and
RBT workloads when the trees are at the start
of the properties (top rows) versus when they
are at the end (bottom rows).

(b) Enumerator performance on the STLC
and FSUB workloads when the constructor
enumeration order aligns with the definition
of the data type (top rows) versus when the
orders are reversed (bottom rows).

Fig. 3: = Naive LeanCheck, = Naive SmallCheck.

Results. We count the number of tasks that are solved by the same framework under
exactly one of the two orderings. The results are shown in Figure 3.

For LeanCheck, the tree-last strategy solved one additional task that the tree-first strategy
did not (completing in about 38 seconds instead of timing out at 60). For SmallCheck,
the tree-last strategy solved 17 more tasks than tree-first, taking between 0.002 and 7
seconds. The low end is especially remarkable: simply by enumerating (Int, Tree,
Tree)s rather than (Tree, Tree, Int)s, SmallCheck finds a counterexample almost
immediately instead of timing out.

Discussion. A deeper dive into the enumeration frameworks to explore these differences
fully would be worthwhile, but what jumps out even from these simple experiments is the
question of sensitivity. The potentially pivotal role of enumeration order in the success or
failure of these strategies means that users of these enumerative frameworks need to be
careful of configuration settings that would be immaterial in their random counterparts. As a
meta point, we put the tree data types at the front of each property as a matter of convention;
it was not until much later that we realized the inadvertent effect on the performance of the
enumerators!

5 Experiments: Rocq

After focusing on the multi-framework landscape of Haskell in the previous section, we
now turn our attention to the single-framework but multi-strategy landscape in Rocq. As
discussed in §3.1, PBT in Rocq revolves around QuickChick (Lampropoulos, 2018), which,
in addition to the type-based and bespoke strategies that we explored in Haskell, provides
two additional options: a specification-driven strategy that derives correct-by-construction
generators from preconditions in the form of inductive relations (Lampropoulos et al.,
2018) and a type-driven fuzzer strategy that combines type-based generation with mutation
informed by AFL-style branch coverage to guide the search toward interesting parts of the
input space (Lampropoulos et al., 2019).

Both papers exemplify the lack of performance comparisons across approaches discussed
in the introduction. First, Lampropoulos et al. (2018) is evaluated in a toy IFC example,
where only the throughput of generators is measured against that of a bespoke generator;
there is no measurement of the effectiveness of the strategy in finding bugs. On the other



599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 LATEX Supplement

(a) BST (b) RBT

(c) STLC (d) IFC

Fig. 4: Effectiveness of Rocq generation strategies on four workloads.
= Type-based generator, = Type-based fuzzer,

= Specification-based generator ((a) - (c) only), = Variational fuzzer ((d) only),
= Bespoke generator.

hand, FuzzChick (Lampropoulos et al., 2019) is evaluated in the more realistic IFC workload
of Hritcu et al. (2016) that we will reuse later in this section, with systematically injected
mutations that break the enforcement mechanism of a dynamic monitor. Still, multiple
aspects of their strategies were left unevaluated, including their performance on any other
workload.

5.1 Comparison of Fuzzers, Derived Generators, and Handwritten Generators

We aim to fill the evaluation gaps described above. How do QuickChick’s newer strategies
compare with the more established bespoke and type-based ones? In particular, are they
effective at uncovering bugs across disparate workloads?

We again use the BST, RBT, and STLC workloads, along with a more complex case study,
IFC, pulled from the FuzzChick paper. For the first three case studies, inductively defined
specifications are widely available (e.g. in Software Foundations (Pierce, 2018)); for IFC,
such specifications do not exist, so the specification-driven generators of Lampropoulos
et al. does not apply.

Results. In Figure 4, we visualize the results of the experiments with a task bucket chart.
Results for the simple BST workload (Figure 4a) establish a baseline level of confidence
for all four methods, as they are all able to solve most tasks quickly. Indeed, most of the
tasks are solved by all methods within 0.1 seconds (the darkest color), with the exception
of the type-based fuzzer, which falls short on a few tasks.

Specification-derived strategies are on par with bespoke ones. In the harder RBT work-
load, with its much more complex invariant, there is a clear performance gap between
type-driven strategies (type-based generator and type-based fuzzer) and precondition-driven



645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

Journal of Functional Programming 15

methods (specification-based generator and bespoke generator). Precondition-driven meth-
ods are able to solve more tasks under 0.1 seconds than type-driven methods are able to
solve within a 60 second timeout. The type-based generator fails to solve 23 tasks, and
the type-based fuzzer fails to solve 25. The bespoke generator solves all tasks in under ten
seconds, and the specification-based generator solves all but 10 tasks. We see a similar
pattern in the STLC workload, with the precondition-driven methods outperforming the
type-driven ones.

Fuzzers exhibit more variance but outperform type-driven methods for sparse precondi-
tions. For the IFC workload, the only precondition-driven strategy is the bespoke generator,
which emerges as a clear winner: noninterference is a property with a very sparse pre-
condition, and type-based methods are basically unable to generate valid inputs. For this
particular workload, we included another fuzzing variant borrowed from the original paper
that introduced FuzzChick (Lampropoulos et al., 2019) to strengthen the connection to the
existing literature: rather than generating a pair of input machines completely at random
and then fuzzing the pair (as in the type-based fuzzer approach), we generate one input
machine and copy it to create a pair that is indistinguishable by default. The two fuzzers,
type-based fuzzer and variational fuzzer, have a clear advantage over the pure type-based
generation approach: the ability to guide generation allows fuzzers to discover parts of the
input space that naive type-based generation are simply unable to reach.

Fig. 5: Tasks solved within the timeout in
one or more trials.

Empty = Type-based generator.
= Type-based fuzzer,
= Variational fuzzer,
= Bespoke generator.

Yet fuzzers are not reliable in this
sense, as Figure 5 shows: if we include
partially solved tasks, fuzzers outper-
form their generator counterparts. This
further clarifies the picture painted by
the first set of comparisons. Fuzzers
may get stuck following program paths
that will not lead to interesting reve-
lations, but sometimes discover paths
that a traditional type-based generator
could never hope to reach. In particular,
roughly 30 tasks are solved at least once
through 10 runs (Figure 5), but less than
10 tasks are fully solved (Figure 4d).

Another interesting observation is
that even though fuzzers typically spend
more time per generated input, as the underlying types are more complex and large, mutat-
ing the input takes less time than generating a new one. For IFC, the type-based generator
takes four times longer per input than the type-based fuzzer.

5.2 Validation and Improvement of Fuzzers

Despite its minimal evaluation, the conclusion of Lampropoulos et al. (2019) seems to
hold — that is, FuzzChick shows promise compared to type-based approaches, but has a
long way to go before catching up with the effectiveness of precondition-driven ones. This
led us to wonder, could we further improve the performance of FuzzChick using Etna?



691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 LATEX Supplement

We focused on two different aspects of fuzzing: size and feedback. FuzzChick’s generation
strategy started small but quickly increased to quite large sizes, relying on the idea of
“combinatorial advantage” discussed in §4.2 — i.e., that larger inputs contain exponentially
many smaller inputs and are therefore more effective for testing. As we saw there, that is not
always the case. After realizing this, we switched to a more gently increasing size bound
which led to significant improvements in terms of throughput, positively impacting our
bug-finding ability.

With respect to feedback, by using Etna to evaluate FuzzChick across multiple workloads
we were able to identify, isolate, and fix a bug that caused it to saturate the seed pool with
uninteresting inputs. FuzzChick (like Zest (Padhye et al., 2019)) keeps two seed pools:
one for valid and one for invalid inputs. FuzzChick’s bug applied to the latter one, and
was hidden from its authors as the variational fuzzer strategy they employed readily gives
access to valid inputs (which are prioritized).

Results. Figure 6 demonstrates the bug-finding capabilities of the original (top) and
tuned (bottom) versions of FuzzChick across the new workloads. The tuned version clearly
outperforms the original in all cases—and is what was used in the previous section.

(a) BST (b) RBT

(c) STLC

Fig. 6: Comparison of the original FuzzChick (top) with the tuned one (bottom).

Hardening QuickChick’s Implementation. In our experimentation with Etna, we stress
tested some of QuickChick’s features in ways that occasional user interactions could not
hope to reach. One particular bug stood out: The main fuzzing loop of FuzzChick is written
in Gallina and uses a natural number fuel to satisfy the termination checker. That natural
number is extracted as an OCaml integer for efficiency purposes. However, when extracted,
a pattern match becomes a call to an eliminator:

Fixpoint loop fuel ... :=

match fuel with

| O => (* base *)

| S fuel’ => (* rec *)

end.

let rec loop fuel ... = (fun fO fS n ->

if n = 0 then fO () else fS (n-1))

(fun () -> (* base *))

(fun fuel -> (* rec *))

fuel

Can you spot the problem? The extracted version is no longer identified by the OCaml
compiler as tail recursive... which means that when Etna used large fuel values, it led to
stack overflows!



737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Journal of Functional Programming 17

(a) BST (b) RBT

(c) STLC

Fig. 7: Effectiveness of OCaml generation strategies on three workloads. The first and second
buckets for each framework represent the bespoke and type-based generators respectively.

= QCheck, = Crowbar (Random), = Crowbar (AFL), = Base quickcheck.

6 Experiments: OCaml

Whereas QuickChick is the defacto property-based testing framework in Rocq, program-
mers in OCaml have a choice of frameworks: QCheck, offering a standard QuickCheck-like
monadic API for writing generators; Crowbar, offering fuzzing capabilities as a wrapper
around AFL; and Base quickcheck, leveraging the Core standard library replacement.

For the workloads, we ported the three basic ones from the previous sections—BST,
and RBT, and STLC—to OCaml. As neither of the three frameworks provides machinery
for automatically deriving either type-based (in the style of Haskell’s generic-random)
or specification-based (in the style of Rocq’s QuickChick) generators, we also ported a
type-based and a bespoke generator to each framework.



783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 LATEX Supplement

Controlling for Size As our experiments earlier in the paper showed, the size of generated
inputs can have a significant impact on the effectiveness of testing. However, the three
OCaml frameworks offer vastly diverse default size distributions. In particular, the one
for Base quickcheck was similar to the effective ones from §4.2, so we left it as is. For
QCheck, to avoid generating a distribution that is heavily bimodal (i.e. with many trees
containing one or two nodes and most others containing several thousand) or where the
range of integers is too large (to provoke bugs that rely on collisions), we used the variants of
QCheck’s integer generators that focus on smaller integer ranges. Finally, for Crowbar, the
default behavior of its list generator (which we use as a basic building block in multiple
strategies) produces very small lists5. As a result, we re-implemented a list generator using
the rest of Crowbar’s API to construct longer lists.

Figure 7 shows the results in bucket-chart form, where we used type-based and bespoke
generators for each of the frameworks, using Crowbar both with its purely random and
AFL-powered backends. For these workloads, the Core-library powered Base quickcheck
bespoke generators outperform the other frameworks in almost all situations. The best
generator that we could write using Crowbar’s interface, performed the worst out of the
strategies we tried. However, that does not mean that Crowbar as a framework is less
effective: rather, just as the FuzzChick case (§5.1), if one takes the effort to handcraft
bespoke generators that satisfy a property’s precondition by construction, coverage-guided
fuzzing only adds overhead for minimal gain.

7 Experiments: Cross-Language Comparison of PBT Frameworks

As we demonstrated throughout this paper, Etna allows for running complex experiments
that can provide powerful insights to property-based testing practitioners or framework
developers. However, the scope of the experiments we have provided thus far has been
limited to the level of a single programming language. Given two testing frameworks
or generation strategies within the same language, we can measure and compare their
bugfinding performance across the different Etna workloads implemented for that language.

Yet, such inter-language experimentation does not encompass the current practice of
property-based testing, where generation strategies in one language are used to test systems
in another. For one example, a specification-derived generator for well-typed System F
terms written in Rocq was used to test a higher-order blockchain language implemented
in OCaml (Hoang et al., 2022); for another, a bespoke generator for file-system inter-
actions written in Erlang were used to test Dropbox’s Python-based file synchronization
service (Hughes et al., 2016).If we want Etna to enable prototyping of and experimentation
with effective testing strategies in practice, we need to be able to compare the performance
of such strategies across languages.

To that end, we developed support to perform cross-language experiments in Etna,
decoupling generation of inputs and testing of properties. On the generation side, each
aspiring Etna user must implement their generation strategy, just like before, but instead

5 Given an input size, it will generate an empty list 50% of the time, or a cons cell whose tail is recursively
generated with the size parameter halved. In practice, that means vanishingly few lists of length more than 5
will be generated even for large input sizes.



829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

Journal of Functional Programming 19

(a) BST (b) RBT (c) STLC

Fig. 8: Generation time to failure for bespoke generators written in different languages.
= Haskell – QuickCheck, = Rocq – QuickChick, = OCaml – QCheck,

= Racket – Rackcheck, = Rust – QuickCheck.

of linking it directly with a framework-dependent way of executing a test, they need to
only output a list of serialized inputs together with the time it took to generate each one.
On the property end, we have created runners for the BST, RBT, and STLC workloads
that can read serialized inputs from the command line to test their related properties with.
Etna can then perform its analysis in a language-agnostic manner: it can give precise, fine-
grained feedback about the performance of each generation strategy (without aggregating
generation, execution, or shrinking times together).

As a beneficial side effect of decoupling strategies from workloads, the extensibility
of Etna is greatly improved. Integrating a new language within Etna no longer requires
porting all of its workloads in yet another language—although that is still an option.
Instead, workloads only need to be implemented once, in any language that can deserialize
inputs to interface with Etna’s API. And strategies written in a previously unsupported
language need only implement a generator and a serializer to use the existing workloads
for experimentation. Moreover, the decoupled approach to generation and testing allows for
quick validation of ports of strategies and workloads to new languages: if running the same
generator produces different results in the cross-language mode than inter-language mode,
that points towards an error in the implementation of the workload or the strategy.

To demonstrate Etna’s new capabilities, we pit bespoke generators written in Haskell,
Rocq, Ocaml, Racket, and Rust against the three workloads. The results are shown in
Figure 8. As we are dealing with tuned bespoke generators, bucket charts are not ideal for
discerning differences—all generators find basically all bugs, quickly. Instead, the top of
the figure shows the total generation time to failure per-framework per-workload.



875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 LATEX Supplement

Despite all bespoke generators implementing the same strategy in principle, there are
slight differences in efficiency: the way each framework manipulates the size of generated
inputs across runs and the performance characteristics of the language both affect the end
result. Still, all strategies are relatively close, with Rust’s QuickCheck, for example, being
simultanously the fastest in the BST and RBT workloads, and the slowest in STLC (we
conjecture because of excessive creation of expensive closure’s in binds).

Another takeway from Figure 8 is the difficulty of the workloads themselves: BST is
comprised of 52 tasks, and the slowest generator (Haskell’s QuickCheck) still finds all 52
injected bugs in 130ms; on the other hand, STLC is comprised of only 20 tasks, but the
fastest generator (Rocq’s QuickChick) takes 300ms, where the slowest takes just over 2
seconds.

Moving forward, armed with cross-language evaluation capabilities and only needing
to implement runners once, we hope to rapidly expand the number of workloads and
frameworks available for experimention.

8 Related and Future Work

The future directions we imagine for Etna are inspired by related work in the literature.
Thus, we discuss both related and future work together in this section.

Etna’s name, referencing every crossword-puzzler’s favorite Italian volcano, was
inspired by two existing benchmark suites in the fuzzing space: LAVA (Dolan-Gavitt
et al., 2016) and Magma (Hazimeh et al., 2020). Both provide a suite of workloads that can
be used to compare different fuzzing tools: LAVA’s workloads consist of programs with
illegal memory accesses that are automatically injected, while Magma relies on real bugs
forward-ported to the current versions of libraries. More recently, FixReverter (Zhang et al.,
2022) offered a middle ground, generalizing real bug-fixes into patterns and applying them
to multiple locations in a program. Etna is different from these suites in a few ways. First,
Etna aims to be a platform for exploration and evaluation rather than a rigid set of bench-
marks. Thus, we do not claim that Etna’s workloads are complete — instead, we intend
for users to add more over time. Additionally, evaluating fuzzing is quite different from
evaluating PBT, since PBT is expected to run for less time on programs with higher input
complexity. This means that Etna’s measurement techniques and workload focus must
necessarily be different from LAVA’s or Magma’s. Still, there are ideas worth borrowing
from these suites: fuzzing benchmarks generally record code-coverage information, which
we plan for Etna to eventually offer as well.

Besides LAVA and Magma, there is a massive literature of Haskell and Rocq papers from
which we will continue to draw both workloads and frameworks. With the help of the com-
munity, we hope Etna will eventually include frameworks like: Luck (Lampropoulos et al.,
2017), a language for preconditions from which generators can be inferred; FEAT (Duregård
et al., 2012), an enumerator framework focusing on uniformity; tools for deriving better
Haskell generators (Mista and Russo, 2021, 2019); and specification-driven enumerators
for QuickChick (Paraskevopoulou et al., 2022).

Outside of the currently supported languages and frameworks, there are yet more oppor-
tunities for growth.We will solicit framework maintainers and researchers to add support



921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

Journal of Functional Programming 21

for other languages such as Scala (SciFe (Kuraj and Kuncak, 2014; Kuraj et al., 2015) and
ScalaCheck (Nilsson, 2019)), Erlang (QuviQ (Arts et al., 2008) or PropEr (Papadakis and
Sagonas, 2011)), or Isabelle (Bulwahn, 2012𝑎,b).

Finally, the presentation back end of Etna is fit-for-purpose, but we intend to do further
research into the best possible ways to visualize PBT results. Consulting experts in human-
computer interaction, we plan to use tools like Voyager (Wongsuphasawat et al., 2017)
to explore which kinds of outcome visualizations real users of Etna want. At the very
least, integrating Etna into a Jupyter notebook (Jupyter, 2023) and providing hooks into
a powerful graphics engine like Vega-lite (Satyanarayan et al., 2017) would make it easier
for users to experiment with visualizations.

9 Conclusion

We designed Etna to meet a concrete need in our research — we needed a clear way to
convince ourselves and others that the PBT tools we build are worth pursuing. Etna provides
that, with an extensible suite of interesting workloads and the infrastructure necessary to
validate and refine designs against them. In §4 - §7, we originally set out to answer
straightforward questions about whether X is better than Y, and while we did get feedback
about general trends, we also uncovered some unexpected nuances of the testing process.
PBT-curious readers may have further questions building upon and extending beyond our
explorations. Etna is there for you!

Acknowledgments

This work was supported by the NSF under award #1955610 Bringing Python Up to Speed
and under #2145649 CAREER: Fuzzing Formal Specifications.

References

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2002. Evaluating the
”Small Scope Hypothesis”. (10 2002).

Thomas Arts, Laura M. Castro, and John Hughes. 2008. Testing Erlang Data Types with QuviQ
QuickCheck. In 7th ACM SIGPLAN Workshop on Erlang (Victoria, BC, Canada). ACM, 1–8.
https://doi.org/10.1145/1411273.1411275

Rudy Matela Braquehais. 2017. Tools for Discovery, Refinement and Generalization of Functional
Properties by Enumerative Testing. Ph.D. Dissertation. University of York.

Lukas Bulwahn. 2012a. The New Quickcheck for Isabelle - Random, Exhaustive and Symbolic
Testing under One Roof. In 2nd International Conference on Certified Programs and Proofs (CPP)
(Lecture Notes in Computer Science, Vol. 7679). Springer, 92–108.

Lukas Bulwahn. 2012b. Smart Testing of Functional Programs in Isabelle. In 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (Lecture
Notes in Computer Science, Vol. 7180). Springer, 153–167.

Koen Claessen, Jonas Duregård, and Micha l H. Pa lka. 2014. Generating Constrained Random Data
with Uniform Distribution. In Functional and Logic Programming (Lecture Notes in Computer
Science, Vol. 8475). Springer, 18–34. https://doi.org/10.1007/978-3-319-07151-0_2

https://doi.org/10.1145/1411273.1411275
https://doi.org/10.1007/978-3-319-07151-0_2


967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 LATEX Supplement

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell
programs. In 5th ACM SIGPLAN International Conference on Functional Programming (ICFP).
ACM, 268–279. https://doi.org/10.1145/351240.351266

Simon Cruanes. 2017. QuickCheck Inspired Property-Based Testing for OCaml. https://github.
com/c-cube/qcheck/.

Stephen Dolan. 2017. Property Fuzzing for OCaml. https://github.com/stedolan/crowbar.
Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson,

Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition.
In 2016 IEEE Symposium on Security and Privacy (SP). 110–121. https://doi.org/10.1109/
SP.2016.15

Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: Functional Enumeration of Algebraic
Types. In Proceedings of the 2012 Haskell Symposium (Copenhagen, Denmark) (Haskell ’12).
ACM, New York, NY, USA, 61–72. https://doi.org/10.1145/2364506.2364515

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015.
Making Random Judgments: Automatically Generating Well-Typed Terms from the Definition of a
Type-System. In 24th European Symposium on Programming (Lecture Notes in Computer Science,
Vol. 9032). Springer, 383–405.

Justin Frank, Benjamin Quiring, and Leonidas Lampropoulos. 2024. Generating Well-Typed Terms
that are not ”Useless”. In Proceedings of the ACM on Programming Languages (PACMPL), Volume
POPL. https://doi.org/10.1145/3632919

Andrew Gallant. 2014. quickCheck: Automated property based testing for Rust (with shrinking).
https://github.com/BurntSushi/quickcheck.

Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C. Pierce. 2021.
Do Judge a Test by its Cover: Combining Combinatorial and Property-Based Testing. In
Proceedings of the European Symposium on Programming (ESOP). https://doi.org/10.
1007/978-3-030-72019-3_10

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite Evaluation
by Developers. In Proceedings of the 36th International Conference on Software Engineering
(Hyderabad, India) (ICSE 2014). Association for Computing Machinery, New York, NY, USA,
72–82. https://doi.org/10.1145/2568225.2568278

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-Truth Fuzzing
Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49 (Dec. 2020), 29 pages.
https://doi.org/10.1145/3428334

Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and Ilya Sergey. 2022. Random Testing of a
Higher-Order Blockchain Language (Experience Report). In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP). https://doi.org/10.5281/
zenodo.6778257

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios Vytiniotis,
Arthur Azevedo de Amorim, and Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly.
In Proceedings of the ACM SIGPLAN International Conference on Functional Programming
(ICFP). https://doi.org/10.1145/2544174.2500574

Catalin Hritcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur Azevedo Amorim, Maxime
Denes, John Hughes, Benjamin C. Pierce, and Dimitrios Vytiniotis. 2016. Testing Noninterference,
Quickly. In Journal of Functional Programming (JFP). https://doi.org/10.1017/

S0956796816000058

John Hughes. 2019. How to Specify It! - A Guide to Writing Properties of Pure Functions.
In Symposium on Trends in Functional Programming. https://doi.org/10.1007/

978-3-030-47147-7_4

John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries of Dropbox:
Property-Based Testing of a Distributed Synchronization Service. In International Conference on
Software Testing, Verification and Validation (ICST).

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering 37, 5 (2011), 649–678. https://doi.org/10.

https://doi.org/10.1145/351240.351266
https://github.com/c-cube/qcheck/
https://github.com/c-cube/qcheck/
https://github.com/stedolan/crowbar
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1145/3632919
https://github.com/BurntSushi/quickcheck
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/3428334
https://doi.org/10.5281/zenodo.6778257
https://doi.org/10.5281/zenodo.6778257
https://doi.org/10.1145/2544174.2500574
https://doi.org/10.1017/S0956796816000058
https://doi.org/10.1017/S0956796816000058
https://doi.org/10.1007/978-3-030-47147-7_4
https://doi.org/10.1007/978-3-030-47147-7_4
https://doi.org/10.1109/TSE.2010.62


1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

Journal of Functional Programming 23

1109/TSE.2010.62

Project Jupyter. 2023. Project Jupyter. https://jupyter.org
George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz

Testing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York, NY,
USA, 2123–2138. https://doi.org/10.1145/3243734.3243804

Casey Klein and Robert Bruce Findler. 2009. Randomized Testing in PLT Redex. In Workshop on
Scheme and Functional Programming (SFP).

Ivan Kuraj and Viktor Kuncak. 2014. SciFe: Scala framework for efficient enumeration of data
structures with invariants. In Proceedings of the Fifth Annual Scala Workshop. ACM, 45–49.
https://doi.org/10.1145/2637647.2637655

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with Enumerable Sets of
Structures. In OOPSLA. https://doi.org/10.1145/2814270.2814323

Leonidas Lampropoulos. 2018. Random Testing for Language Design. Ph.D. Dissertation. University
of Pennsylvania.

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and
Li yao Xia. 2017. Beginner’s Luck: a language for property-based generators. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, (POPL). https:
//doi.org/10.1145/3009837.3009868

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage Guided,
Property Based Testing. In Proceedings of the ACM Conference on Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA). https://doi.org/10.1145/3360607

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2018. Generating Good
Generators for Inductive Relations. In Proceedings of the ACM Conference on Principles of
Programming Languages (POPL). https://doi.org/10.1145/3158133

Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickChick: Property-Based Testing In Coq.
Electronic textbook.

Fredrik Lindblad. 2007. Property Directed Generation of First-Order Test Data. In 8th Symposium
on Trends in Functional Programming (Trends in Functional Programming, Vol. 8). Intellect,
105–123.

Andreas Löcher and Konstantinos Sagonas. 2018. Automating Targeted Property-Based Testing. In
2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST).
70–80. https://doi.org/10.1109/ICST.2018.00017

Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-Based Testing. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (Santa
Barbara, CA, USA) (ISSTA 2017). Association for Computing Machinery, New York, NY, USA,
46–56. https://doi.org/10.1145/3092703.3092711

David Maciver and Alastair F. Donaldson. 2020. Test-Case Reduction via Test-Case Generation:
Insights from the Hypothesis Reducer (Tool Insights Paper). In 34th European Conference on
Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual
Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 13:1–13:27. https://doi.org/10.4230/LIPIcs.ECOOP.

2020.13

David R. MacIver. 2016. Hypothesis: Property-Based Testing for Python. https://hypothesis.
works/.

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson, and Hanne Riis
Nielson. 2017. Effect-Driven QuickChecking of Compilers. Proc. ACM Program. Lang. 1, ICFP,
Article 15 (aug 2017), 23 pages. https://doi.org/10.1145/3110259

Agustı́n Mista and Alejandro Russo. 2019. Generating Random Structurally Rich Algebraic Data
Type Values. In Proceedings of the 14th International Workshop on Automation of Software Test
(Montreal, Quebec, Canada) (AST ’19). IEEE Press, 48–54. https://doi.org/10.1109/AST.
2019.00013

https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://jupyter.org
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/2637647.2637655
https://doi.org/10.1145/2814270.2814323
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3360607
https://doi.org/10.1145/3158133
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://hypothesis.works/
https://hypothesis.works/
https://doi.org/10.1145/3110259
https://doi.org/10.1109/AST.2019.00013
https://doi.org/10.1109/AST.2019.00013


1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 LATEX Supplement

Agustı́n Mista and Alejandro Russo. 2021. Deriving Compositional Random Generators. In
Proceedings of the 31st Symposium on Implementation and Application of Functional Languages
(Singapore, Singapore) (IFL ’19). Association for Computing Machinery, New York, NY, USA,
Article 11, 12 pages. https://doi.org/10.1145/3412932.3412943

Rickard Nilsson. 2019. ScalaCheck: Property-Based Testing for Scala. https://scalacheck.
org/.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon. 2019. Semantic
Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery, New
York, NY, USA, 329–340. https://doi.org/10.1145/3293882.3330576

Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an Optimising
Compiler by Generating Random Lambda Terms. In Proceedings of the 6th International Workshop
on Automation of Software Test (Waikiki, Honolulu, HI, USA) (AST ’11). ACM, New York, NY,
USA, 91–97. https://doi.org/10.1145/1982595.1982615

Manolis Papadakis and Konstantinos F. Sagonas. 2011. A PropEr integration of types and function
specifications with property-based testing. In Proceedings of the 10th ACM SIGPLAN workshop
on Erlang, Tokyo, Japan, September 23, 2011. 39–50. https://doi.org/10.1145/2034654.
2034663

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos. 2022. Computing Correctly with
Inductive Relations. In Proceedings of the ACM SIGPLAN Symposium on Programming Language
Design and Implementation (PLDI). https://doi.org/10.1145/3519939.3523707

Benjamin C. Pierce. 2018. Software Foundations. Electronic textbook.
Bogdan Popa. 2021. Rackcheck: Property-Based Testing for Racket. https://docs.racket-lang.
org/rackcheck/index.html/.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. SmallCheck and Lazy SmallCheck:
automatic exhaustive testing for small values. In 1st ACM SIGPLAN Symposium on Haskell. ACM,
37–48. https://doi.org/10.1145/1543134.1411292

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics
23, 1 (Jan. 2017), 341–350. https://doi.org/10.1109/TVCG.2016.2599030

Jacob Stanley. 2019. Hedgehog: Release with Confidence. https://hackage.haskell.org/
package/hedgehog/.

Jane Street. 2019. Random Testing Framework for OCaml. https://opensource.janestreet.
com/base_quickcheck/.

The Cargo Team. 2018. Cargo: Rust’s Package Manager. https://doc.rust-lang.org/cargo/.
Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand, Jock

Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2: Augmenting Visual Analysis with Partial
View Specifications. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, Denver Colorado USA, 2648–2659. https://doi.org/10.1145/3025453.
3025768

Li-yao Xia. 2018. A quick tour of generic-random. https://hackage.haskell.org/package/
generic-random-1.5.0.0/docs/Generic-Random.html.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in
C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. 283–294. https:
//doi.org/10.1145/1993498.1993532

Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXREVERTER: A Realistic
Bug Injection Methodology for Benchmarking Fuzz Testing. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 3699–3715.

https://doi.org/10.1145/3412932.3412943
https://scalacheck.org/
https://scalacheck.org/
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/2034654.2034663
https://doi.org/10.1145/2034654.2034663
https://doi.org/10.1145/3519939.3523707
https://docs.racket-lang.org/rackcheck/index.html/
https://docs.racket-lang.org/rackcheck/index.html/
https://doi.org/10.1145/1543134.1411292
https://doi.org/10.1109/TVCG.2016.2599030
https://hackage.haskell.org/package/hedgehog/
https://hackage.haskell.org/package/hedgehog/
https://opensource.janestreet.com/base_quickcheck/
https://opensource.janestreet.com/base_quickcheck/
https://doc.rust-lang.org/cargo/
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://hackage.haskell.org/package/generic-random-1.5.0.0/docs/Generic-Random.html
https://hackage.haskell.org/package/generic-random-1.5.0.0/docs/Generic-Random.html
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Introduction
	Platform Design
	Background: Property-Based Testing and Generation Strategies
	Design Principles
	Evaluate for the ground truth, not for proxy metrics.
	Use minimal, but precise interfaces.
	Every Etna capability should be available to use manually

	Terminology
	Using Etna
	Analysis and Presentation

	Populating the Platform
	Languages and Frameworks
	Workloads

	Experiments: Haskell
	Comparing Frameworks
	Exploring Sized Generation
	Enumerator Sensitivity

	Experiments: Rocq
	Comparison of Fuzzers, Derived Generators, and Handwritten Generators
	Validation and Improvement of Fuzzers

	Experiments: OCaml
	Experiments: Cross-Language Comparison of PBT Frameworks
	Related and Future Work
	Conclusion

