Deeper Properties for Programmable Testing

ALPEREN KELES, University of Maryland, College Park, USA

JUSTIN FRANK, University of Maryland, College Park, USA

CEREN MERT, University of Maryland, College Park, USA

HARRISON GOLDSTEIN, University of Maryland, College Park, USA
LEONIDAS LAMPROPOULOS, University of Maryland, College Park, USA

Property-based testing (PBT) is a popular technique for establishing confidence in software, where users write
properties—i.e. executable specifications—that can be checked many times in a loop by a testing framework. In
modern PBT frameworks, properties are usually written in shallowly embedded domain specific languages,
and their definition is tightly coupled to the way they are tested. This coupling significantly limits the
programmability of testing: changing the way the property runners works often necessitates writing a
new framework from scratch. Even when the configuration options provided by a framework suffice, the
shallowness of the embedding means that such configurations need to be interleaved with the property itself,
while users are also limited to precisely what library authors had the prescience to allow for when developing
the framework.

We propose a new, deeper—but not entirely deep—language for properties based on a mixed embedding that
we call deferred binding abstract syntax, allowing us to reify properties as a data structure and decouple them
from the property runners that execute them. We implement this language in Rocq and Racket, leveraging
the power of dependent and dynamic types in each respectively. Finally, we showcase the flexibility of this
new approach by rapidly prototyping a variety of property runners, highlighting domain-specific testing
improvements that can be unlocked by more programmable testing.

1 INTRODUCTION

In property-based testing [5], users build confidence in their code using properties that describe
what it means for a program to be correct, expressed in the form of universally quantified executable
predicates: e.g. for all programs, compiling them with and without optimizations yields assembly
with the same behavior; for all abstract syntax trees, pretty printing them and parsing the result
yields back the original. Property-based testing frameworks then provide both a property language,
an API for expressing such properties along with (optional) annotations that configure testing
behavior (such as how to generate or pretty print test inputs); as well as a property runner, a way to
actually test a user-specified property taking any annotations into account.
Consider, for example, the print-parse roundtrip property above in Haskell’s QuickCheck:

prop_roundtrip :: Property :: Gen Exp
prop_roundtrip = :: Exp -> [Exp]
forAllShrink gen shrink :: Exp -> String
(\e -> parse (pretty e) = Just e) parse :: String -> Maybe Exp
Given some type of expressions Exp, users have to write a generator for expressions —that is, a
function from some random seed to a concrete Exp; a shrinking function —a function from

an expression to a list of potentially smaller expressions for minimization purposes; and a predicate
on expressions, which in this case is a function that given an expression e, prints it, parses the
result, and checks that it is equal to the original. To create a Property that QuickCheck can test,

Authors’ addresses: Alperen Keles, akeles@umd.edu, University of Maryland, College Park, , College Park, Maryland, USA,
20740; Justin Frank, jpfrank@umd.edu, University of Maryland, College Park, , College Park, Maryland, USA, 20740; Ceren
Mert, cmert@umd.edu, University of Maryland, College Park, , College Park, Maryland, USA, 20740; Harrison Goldstein,
harrygol@umd.edu, University of Maryland, College Park, , College Park, Maryland, USA, 20740; Leonidas Lampropoulos,
leonidas@umd.edu, University of Maryland, College Park, , College Park, Maryland, USA, 20740.

HTTPS://ORCID.ORG/0009-0000-5734-3598
HTTPS://ORCID.ORG/0009-0007-7024-7331
HTTPS://ORCID.ORG/0009-0002-9365-0661
HTTPS://ORCID.ORG/0000-0001-9631-1169
HTTPS://ORCID.ORG/0000-0003-0269-9815
https://orcid.org/0009-0000-5734-3598
https://orcid.org/0009-0007-7024-7331
https://orcid.org/0009-0002-9365-0661
https://orcid.org/0009-0002-9365-0661
https://orcid.org/0000-0001-9631-1169
https://orcid.org/0000-0003-0269-9815

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

users can leverage the forAllShrink combinator from QuickCheck’ property language API to put
everything together.

In turn, QuickCheck provides a property runner to test such a Property, consisting of two tight
loops: first, it repeatedly generates a random expression using and executes the predicate until
it succeeds in falsifying the predicate (or a predefined limit is reached); then, if a counterexample
e has been found, it tries to minimize it by recursively checking if any elements of also
falsify the predicate, and repeating this process until a (local) minimum has been reached which is
finally reported to the user. A pictorial depiction of the runner can be seen at Fig. 1.

Generation Loop Shrinking Loop
check e check e' . ,
| shrink e print e/e
gen C > shrink e | e' C
PR L—

Fig. 1. QuickChick Property Runner

Unsurprisingly, the design of the property runner itself has a tremendous effect on the perfor-
mance of the random testing process, and the random testing literature is abundant with novel
attempts to re-architect the underlying loops. One example of a class of such attempts is mutation-
based generation approaches. Such approaches, inspired by the literature on fuzz testing, don’t
repeatedly sample a generator in a loop; instead, they keep track of inputs that were somehow
“interesting” and mutate them slightly in the hopes of uncovering yet more interesting ones. What’s
considered interesting can also vary: in FuzzChick [11] they instrument the predicate under test
and keep track of branch coverage; in FuzzFactory [20] they allow for more general user-provided
instrumentation; and in Targeted Property-Based Testing [14] they attempt to maximize some
user-provided quantity. Another example lies with integrated shrinking approaches, such as Hedge-
hog [25] or Hypothesis [16], which don’t minimize counterexamples using a best-first search
approach; instead, they leverage the generators themselves to generate smaller inputs.

Each of these frameworks introduced new ideas that could greatly improve the effectiveness of
testing, but their broad acceptance is limited by the fact that each is implemented as a standalone
library, rather than as a modular plugin to existing PBT machinery. That is not an accident: it is
a fundamental limitation of a choice in the design of the property language; it is a fundamental
limitation of using a shallow embedding to express properties.

For concreteness, let’s revisit our running example of a simple roundtrip property in QuickCheck.
As discussed earlier, to define a property users must specify predicates as well as other aspects of
the property such as the way to generate inputs or minimize counterexamples. QuickCheck (and
many subsequent PBT frameworks) made a natural and extremely convenient choice: allow users
to specify these in the host language, using familiar host features. To achieve this, QuickCheck
authors came up with an ingenious design: they baked their property runner in the definition of
their type of properties.

A similar design choice is pervasive across the literature. In other words, beginning with
QuickCheck, the language of properties is represented using a shallow embedding: host-language
functions that are familiar to write, easy to execute, but otherwise impossible to inspect (e.g. via

Deeper Properties for Programmable Testing

pattern matching). As a result, frameworks hard-code property runners by engineering rigid prop-
erty runners, with only a handful of predefined hooks for user configuration. That is, users are
limited to exactly what library authors had the prescience to account for when building the tool.

In this work, we challenge this design decision, and present a new way of designing property-
language APIs. Instead of using a shallow embedding (like QuickCheck), we introduce a novel style
of mixed embeddings which we call deferred binding abstract syntax, where rather than binding a
variable once at the site of its universal quantification, we will instead bind it at every one of its
use sites. Following other work on deeply embedded domain-specific languages [7, 8, 23, etc.], we
design a language for properties using this embedding style that is reified as a data structure and
then interpreted later on. This allows us to decouple the specification from the runner. The property
itself expresses only the specification and the runner can be programmed by the user to interpret
the property—allowing for maximum programmability.

Concretely, we offer the following contributions:

e We introduce a new style of mixed embeddings which is particularly well-suited for expressing
properties for testing, separating specifications from testing configurations and allowing for
arbitrary re-interpretation of the way properties are executed (Section 2).

e We implement our property language API in the QuickChick property-based testing framework
for Rocq, highlighting the value of dependent types for ensuring that properties are well-
formed, and describing how to retain ergonomics in the presence of dependent types (Section 3).

e We also implement our property language API as part of a new PBT framework in Racket,
leveraging dynamic typing and macros to hide the internal data structure, providing an
identical user interface to existing libraries, while enabling flexibility through the deeper
embedding (Section 4).

e We demonstrate the flexibility of this new language by implementing a variety of complex
runners from the recent literature—including ones with coverage-guided fuzzing and context-
sensitive shrinking—all in user code. We also evaluate our implementations with 4 case studies
using and extending the ETNA [24] evaluation platform. We show that testing with the deeper
embedding does not incur any performance overhead, while providing significant flexibility
to users that can directly translate to more effective testing (Section 5).

We conclude with related (Section 6) and future (Section 7) work.

2 A MIXED PROPERTY LANGUAGE

Properties are simply universally quantified predicates. We want to define a layer of such properties
on top of some standard host language, equipped with at least booleans:

T = Bool|r—>T1
e = x|Axel|lee|T|F]..

In practice, the host language needs to also support some kind of randomness for generation, lists
for shrinking, strings for pretty printing, etc. For presentation purposes, let’s begin by formally
describing the core boolean structure:

p = Vx:z.ple

That is, properties are either universal quantifiers or an injection of a host predicate.

The core question we ask in this paper is: how should we represent this language? We’'ll start
by reviewing existing embedding solutions from the literature, demonstrating why they are not
flexible enough to allow for users to customize or specify their runners, before proposing our
solution.

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

Background: Shallow Embedding. In established property-based testing frameworks, the answer
is using a shallow embedding. That is, they represent binders for universal quantifiers in properties
as a binder in the host language.

forall : Vt.(r — prop) — prop
check : Bool — prop
run : prop — 10 ()

Concretely, the type of properties is some type prop in the host language (usually restricted via
typeclasses) check injects a host boolean into this type, and forall takes a host-level function
and turns it into a property. Finally, frameworks also provide a run function to test properties
constructed using this APL

The main advantage of this approach is that it is very convenient for users to write properties
(using host-level binders), and extremely easy to test them (simply invoking the framework-provided
run). However, since the prop type is opaque, users can’t inspect the structure of the property, can’t
pattern match on it, and can’t customize or write their own runners.

Background: Deeper Embeddings. The polar opposite alternative would be to use a deep embedding,
which would necessitate defining an inductive representation of both the host language and the
language of properties. Such an option is a non-starter: while it would enable pattern matching and
recursively traversing properties, it would be prohibitively cumbersome to host language users.

Naturally, these are not the only two embedding options—researchers have explored a wide range
of mixed embeddings, that reify parts or aspects of the language being considered. For example,
we could attempt a HOAS-style approach, where we define an inductive type of properties, with
a constructor corresponding to forall and check, both indexed by the arguments of their shallow
counterpeu’ts:l

Inductive Prop :=
| Forall : Vt. (f : Vx : 7. Propx). Prop f
| Check : Vb : Bool. Prop b

Such a representation still allows us to encode the universal quantifiers using host language
binders, but also makes some headway into the issue at hand—given a property we can now pattern
match against it! However, there is still a problem: to access the “rest” of the property that follows a
universal quantification, we need an element of the type being quantified over; since such elements
are going to be randomly generated, we can’t actually recurse down the structure of the property
without restricting ourselves to something along the lines of QuickCheck’s Generator monad.

The key issue is that we’re hiding the definition of the “rest” of the property under a host-language
binder. Could we use standard host language constructs to define the predicates at the leaves of the
property (the Checks), while retaining the ability to pattern match on the property structure?

Proposal: Deferred Binding Abstract Syntax. Our solution is what we call deferred binding abstract
syntax (DBAS): rather than bind a variable once at the site of its universal quantification, we will
instead bind it at every one of its use sites.

Inductive Prop (env : [Type]) :=
| Forall : Yt. Prop (7 :: env) — Prop env
| Check : ([[env]] — Bool) — Prop env

I'We’re abusing notation a bit here as any embedding would probably require additional type information to be admitted by
a dependently typed language, but it’s enough to showcase the problem.

Deeper Properties for Programmable Testing

We still define an inductive type of properties, with one constructor for each combinator in our
APIL We also index our type of properties by an environment: a list of types that have already been
quantified. The key change is that we move the host level binder from the binding site (Forall) to its
use site (the Check). That is, the argument to Forall is no longer a function, but simply a property
with an extended environment; on the other hand, the argument to Check is no longer a simple
boolean, but a function that binds everything in the environment. In the code above, we denote
that as [env] —we will see how it can be implemented in a statically typed or dynamically typed
setting respectively in later sections.

At a first glance, this is a counter-intuitive trade-off: every time you want to use a variable,
you have to bind everything that was quantified before that point. That would only make sense
in a scenario where there are a lot of quantifications and few variable uses—which is precisely
the case for the language of properties! Compared to the previous language representations, this
DBAS-based one allows us to access the structure of the “rest” of the predicate without having
access to a concrete value, which is necessary when such values are to be randomly generated.
Finally, compared to the fully shallow representation, the added inductive structure and typing
information pose some burden to the user experience, but once again, we’ll address these issues in
host-language-specific settings.

Adding Annotations. Generalizing the property language above to include annotations for gen-
eration, shrinking, or printing of individual elements is straightforward. We simply include an
optional extensible list of annotations at the Forall constructor:

Inductive Prop (env : [Type]) :=
| Forall : Yt. as — Prop (t :: env) — Prop env
| Check : ([[env]] — Bool) — Prop env

as =0| (kVr. [env] — 1) = as
k :=gen|shr| ...

At a high level, we can annotate each Forall constructor with a (possibly empty) sequence of (host-
level) functions that quantify over the context so far (as in Check) and return annotation-specific
terms (e.g. a generator or a shrinker). We demonstrate the exact implementation of such annotations
to the following two host-language-specific sections.

3 A DEEPER DEPENDENTLY TYPED PROPERTY LANGUAGE

Implementing the language of universally quantified properties using deferred binding abstract
syntax is straightforward on top of a dependently typed language, but achieving good ergonomics
can be a challenge. In this section we will focus on implementing such a language on top of the
QuickChick [10] framework for property-based testing in Rocq.

To that end, we explicitly encode contexts in our properties, capturing every input that will have
been generated by that point. We will use a standard inductive definition of contexts, using 0 to
denote the empty context and - to extend a context by a type. Given a context, we can calculate the
type corresponding to it: the type of tuples containing all of its types in order, with unit as the
base case:

Fixpoint interp (C : Ctx) : Type :=

match C with

| @=> unit

| T-C=T * interp C
We will write [C] as a shorthand for interp C. end.

Inductive Ctx :=
| 0: Ctx
| - : Type — Ctx — Ctx.

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

Now we can define a deeper version of the property language using DBAS:

Inductive Prop : Ctx — Type :=

| FORALL : forall {A: Type} {C: Ctx}
(generator : [C] = G A) (mutator : [[C] > A —G A)
(shrinker : [[C] — A — list A) (printer : [[C] — A — string),
Prop (A -C) — Prop C

| IMPLIES : forall C
(prop : [C] — bool),
Prop C — Prop C

| CHECK : forall C,
([c] — bool) — Prop C.

Just like the shallow approach of QuickCheck, this representation allows us to express, in the

host language, type-based generators, mutators, shrinkers, and printers for each quantifier in a

property. Just like the shallow approach, we can use typeclasses to automate much of the burden of

specifying the property (as we will see below). Crucially, however, unlike the shallow approach we

can pattern match on this definition and construct a wide range of methods for interpreting such

properties without needing to modify the code of the underlying property-based framework at all.
For example, the standard “generate-and-run” loop of Figure 1, which amounts to interpreting

such a property in the original shallow embedding, can be straightforwardly encoded as follows,

first defining a simple type of results that holds information such as the inputs that were generated

(calculated recursively from an input property prop):

Inductive RunResult {C: Ctx} (prop : Prop C) :=

| Normal : [inputs prop] — bool — RunResult prop

| Discard : [[inputs prop] — RunResult prop.

And then the runner as a straightforward fixpoint:

Fixpoint genAndRun (C : Ctx) (cprop : Prop C) : [C] — G (RunResult cprop) :=
match prop with
| FORALL A C name gen mut shr pri prop =>

fun env =>
a « gen env;;
res <« genAndRun (A" -C') prop’ (a, env);;
match res with
| Normal env truth =>
ret (Normal (Some a, env’) truth’))
| Discard env =>
ret (Discard (Some a, env')))
end)
| CHECK C prop =>
fun env =>
ret (Normal tt (prop’ env)))
| IMPLIES C pre prop =>
fun env =>
if pre’ env then

2Branches follow the standard convoy pattern to enable type inference in dependent pattern matching, and we hide those
in —they are unfortunate artifacts of Rocq’s support for dependently typed programming.

http://adam.chlipala.net/cpdt/html/MoreDep.html

Deeper Properties for Programmable Testing

res « genAndRun C' prop’ env;;
match res with
| Normal env truth =>
ret (Normal env' truth’))
| Discard env =>
ret (Discard env’)
end)
else ret (Discard (nones prop’)))
end.

The flexibility to define such a loop at the hands of users allows for encoding all kinds of interpreters
for properties, including pure generators, runners, shrinkers, fuzzers, with fully programmable
execution, printing, and benchmarking options. We’ll further demonstrate this flexibility by imple-
menting a series of runners from the literature, all on top of this abstract property language.

Usable Defaults. A standard disadvantage of deep embeddings compared to shallow ones, is that
they are generally less convenient to work with. Encoding everything in the host language, as in
a shallow embedding, allows users to simply reuse a large part of host language infrastructure.
The property language described above enables much of that using dependent types. Still, it is
desirable to provide as seamless an experience for new users as possible, leveraging the same
familiar typeclass-based interfaces of the shallow setting.

For concreteness, without any effort to provide such an experience, users would have to write
the following to encode the roundtrip property of the introduction:

Definition prop_roundtrip_bad :=
FORALL (fun tt => gen) (fun tt => mut)
(fun tt => shrink) (fun tt => pretty) (
-CHECK (Expr -0) (fun '(e, _) => parse (pretty e) == Some e)).

That is, users would have to write a lot of annotations to achieve the same result, both at the type
level (Expr - 0) and to annotate individual FORALLs with the various generators, shrinkers, and
printers.

However, we are not restricted to providing the core property definition as the final user-level
interface! To that end, we present a simple surface-level language that allows users to write
simplified properties, using typeclasses to fill in the remaining information. For example, the same
property can be defined in our framework as in the much more straightforward snippet that follows:

Definition prop_roundtrip :=
ForAll e :- Expr,
Check (fun 'e => parse (pretty e) == Some e).

In addition, users can override particular aspects of the property easily. For example, specifying
a particular generator to be used, such as gen can be done as follows:

Definition prop_roundtrip :=
ForAll e :- Expr gen:gen,
Check (fun 'e => parse (pretty e) == Some e).

Most of this surface language is achieved using Rocq’s powerful notation mechanism, including
its support for recursive notations. The final piece of the puzzle to simplify Check definitions relies
on typeclasses. In particular, we associate each predicate with its corresponding context and a
proof of that correspondence, in a class we name Untuple:

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

Class Untuple (A : Type) :=
{ untuple : Ctx
; untuple_correct : [untuple] = A }.

We then provide instances for the empty context and the bind:

Instance Untuple_empty : Untuple tt :=
{ untuple := 0
; untuple_correct := eq_refl }.
Instance Untuple_pair {A B} “{Untuple B} : Untuple (A * B) :=
{ untuple := A --untuple B _
; untuple_correct := ... }.

Before finally providing a convenient user-level wrapper for property conclusions, which we used
above:

Definition Check {A} “{Untuple A} (p : A — bool) : Prop (-untuple A _).
refine (Check (-untuple A _) _).
rewrite untuple_correct.
exact p.

Defined.

Finally, we can also leverage the extensive metaprogramming facilities of QuickChick to provide
an even more seamless default when users only want to specify the predicate to be checked, which
provides a no-effort starting point for newcomers:

Definition roundtrip (e : Expr) := parse (pretty e) == Some e.
Derive Property roundtrip.
(* ==> roundtrip_prop is defined. x*)

This command constructs the deeper property above using the Rocq predicate itself.

4 A DEEPER DYNAMICALLY TYPED PROPERTY LANGUAGE

Representing the property language with deferred binding abstract syntax is not restricted to a
dependently typed setting; in this section, we show how to implement it in a dynamically typed
language like Racket. In a such a setting, we no longer have static guarantees about the types of
the variables in the context; instead, we fall back on dynamic errors. However, we are also not
encumbered by the type system, as we can freely invoke functions on arguments of (statically)
unknown types, which we will fully take advantage of to recover most of the convenience of a
shallow representation.
The first step is to directly translate the datatype into a series of structs:

(struct Forall (var augments body))
(struct Implies (prop body))
(struct Check (prop))

In Racket, we cannot rely on typeclasses to automatically discover generators or shrinkers for
property defined variables. Instead, we add a dictionary to the Foralls that allows us to attach extra
information onto each variable that we call augments. Concretely, this dictionary maps augment
names as Racket keywords to a function that takes the current environment of previously-generated
variables and produces the augment value. These augments are fully generic in that they can store
any values, though our implementation defines specific uses for three.

e i#:contract attaches an invariant contract to values bound to the variable.

Deeper Properties for Programmable Testing

e #:gen attaches a generator for the variable. In order to make the usage of generators from
other frameworks e.g. RackCheck easier, we intentionally treat the generator value as
opaque. Instead, property interpretations that use the generators take a user-provided
sampling function that is applied to the generator.

e i#:shrink attaches a function used for shrinking counterexamples, it expects a function from
values to lists of shrunk values.

However, handling the struct-based definitions directly involves a lot of explicit plumbing that we
would rather not need to write. Consider once again the roundtrip property from the introduction:

(define roundtrip
(Forall 'e (hash '#:contract (4 (env) expr?) '#:gen (4 (env) gen-expr))
(Check (A (env)
(let ([e (dict-ref env 'e)])
(equal? (parse (print e)) €))))))

There are two main ergonomic issues: the repeated nesting and the explicit environment passing
and lookup. We can use Racket’s extensive macro capabilities to create a DSL for writing these
deeper properties. To that end, we flatten the nested structure by using the fact that properties
are isomorphic to a list of Forall and Implies terminated by a single Check. Then, we use Racket’s
variable transformer macros to define and refer to generator variables as Racket identifiers and
insert the dictionary passing plumbing for us.

These features allow us to translate the above roundtrip property into one much closer to how
shallow embedding properties are written.

(define roundtrip
(property
(forall e #:contract expr? #:gen gen-expr)
(equal? (parse (print e)) e)))

Property Runners. Developing property runners in the Racket setting shares much of the structure
of the Rocq version, with some extra logic to attach the contract to the generated value if present.

(define (gen-and-run p sample . args)
(let loop ([p pl [env (hash)1)
(match p
[(Forall var augments body)
; Ensure the variable has a generator augment
(unless (dict-has-key? augments '#:gen) (error 'no-generator))
; Generate a value using the sample function
(define val (apply sample ((dict-ref augments '#:gen) env) args))
; Check the contract if present
(when (dict-has-key? augments '#:contract)
(invariant-assertion ((dict-ref augments '#:contract) env) val))
; Recur
(loop body (dict-set env var val))l
[(Implies prop body)
(if (prop env) ; Check precondition
(loop body env) ; If it passes, recur
(values 'discard env))] : If it fails, discard
[(Check prop)

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

(if (prop env) ; Check result
(values 'pass env) ; Success
(values 'fail env))1))) ; Failure

Encoding properties using deferred binding abstract syntax in Racket gives users the same variety
in choices of property runners loops that the Rocq version does, as well as the same programmability
for expert users. We utilize Racket’s contracts to optionally allow users to enforce typed boundaries
on generated variables. Racket’s powerful macros enable us to write properties in a style that
requires little syntactic overhead compared to shallow embeddings without sacrificing any of
the programmability provided by deeper embeddings. In Section 5.2.2, we show that the extra
programmability does not come at a performance cost, enables the writing of property runners that
execute many runs in parallel, and shrinking loops that find significantly smaller counterexamples.

5 EVALUATION

In this section, our primary goal is to evaluate the flexibility and the expressiveness of representing
properties using DBAS. To that end, we begin by showcasing how to straightforwardly implement a
number of different property runners from the recent literature. In particular, we implement a basic
generate-and-shrink runner (as in QuickCheck and QuickChick); a feedback-guided mutation runner
(generalizing FuzzFactory, FuzzChick, and Targeted Property-Based Testing); and a parallelized
property runner (inspired by the recent work in a parallel runtime for QuickCheck) [9]. Crucially,
all runners are developed on top of the same property language, without the need to modify the
internals of a framework—let alone to write a new one from scratch. We then carry out a sequence
of case studies to evaluate various aspects of the performance of these implementations.

In our first case study, we compare the performance of the standard DBAS-based property
runner as implemented in Rocq and Racket to the existing property runners of QuickCHick and
RAckCHECK. For benchmarking, we turn to the ETNA [24] framework for evaluating property-based
testing performance, which comes with a series of Rocq workloads—programs along with injected
bugs—in the form of Binary Search Trees, Red-Black Trees, and the Simply Typed Lambda Calculus.
For the purposes of this case study we extended the ETNA tool to support Racket and ported
these workloads. We found that using the DBAS-based embedding has no observable performance
overhead.

In our second case study, we explore how different design choices with respect to the repre-
sentation and sampling of the seed pool affect testing performance, reusing a case study from
both FuzzChick [11] and Targeted Property-Based Testing [14]: testing information-flow control
abstract machines. In both original case studies, the design choices around the search strategy
and the power schedule of the feedback loop are not empirically justified; in large part, because
making such choices involved making changes to the underlying infrastructure and would be hard
to parameterize and benchmark. Here, we implement six different data structure representations
for saving interesting inputs, along with four different energy scheduling strategies to explore the
effect of such configurations in the performance of property-based testing tools. Even though we
find that a particular heap-based implementation appears to be more efficient and we will nominate
it as the default strategy in the next release of QuickChick and RackCheck, the key takeaway is
that such an exploration was not just possible, but very straightforward to undertake.

In the third case study, we compare the default integrated shrinking capabilities of RACKCHECK
with a simple external shrinker we implemented for the DBAS-style Racket library, using a (port
of) the System F workload in ETNA for Racket. We show that our external shrinker is significantly
more effective at shrinking counterexamples, once again illustrating the standard trade-off between
usability (no need to write a shrinker) and effectiveness (size of minimized counterexamples) in

Deeper Properties for Programmable Testing

internal vs external shrinking. Once again, we argue that this choice should be up to the user, and
not fixed by the developer of a framework, which is exactly what a representation of properties
based on DBAS provides.

In our last case study, we implement a parallel property-runner inspired by a recent work on
parallelizing QuickCheck [9]. We implemented a worker queue based parallelization in Racket,
outperforming the single threaded property-runner, all in just an evening’s work, demonstrating
the benefits of DBAS in enabling faster PBT experimentation.

5.1 Flexibility: Encoding Property Runners

Simple Generational Property Runner. We begin demonstrating the flexibility of our approach by
re-implementing a series of property runners from the literature, starting with the natural one: the
generate-test-shrink-test loop introduced by QuickCheck which was shown in Fig. 1. Throughout
this section functions corresponding to the components in the pictorial diagram are overlayed with

the same colors.
Each component of the property runner

in Fig. 1 has a clear correspondence to the
corresponding overlayed sections in Fig. 2.
The functions (g€, @M, shrinkLoop ,
and (print are the building blocks of user
level property-runners, but can also be
written by users themselves in a straight-
forward manner as shown in Sections 3
and 4. We use them here to present runners
at a higher level of abstraction as enabled
by DBAS, focusing on how these compo-
nents interact with each other in order to
showcase users how to implement new run-
ners corresponding to their needs.

The Simple Generational Property Run-
ner composes of two tight loops, the first

Definition runLoop (fuel : nat) (cprop : Prop @) :=

let fix runLoop' (fuel : nat) (cprop : Prop 0)
(passed : nat) (discards: nat) : G Result :=

match fuel with

| 0 => ret (mkResult discards false passed [])

| S fuel' =>
dnput <~ gen cprop (Log2 (passed + discards));;
(res <= run cprop input ;.
match res with
| Normal seed false => (* Fails %)
let shrunk := shrinkLoop 10 cprop seed in
let printed := print cprop @ shrunk in
ret (mkResult discards true (passed + 1) printed)

| Normal _ true => (* Passes *)
runLoop' fuel' cprop (passed + 1) discards

| Discard _ _ => (x Discard x) .
runLoop' fuel' cprop passed (discards + 1) one runs -’ -_’ -’ - :"untll
end a counterexample is found, or until a pre-
end in defined limit of tests has been reached. The

runLoop' fuel cprop 0 Q.

Fig. 2. Simple Generational Property Runner in Rocq

second loop runs (shrink , @@, ‘shrink ,
@@ . . . until it is not able to minimize the
input further, reporting the smallest input

within the shrinking process.

The code in Fig. 3 shows the same runner in Racket, with minor syntactical adjustments.

Mutation-Based Property Runners. Fuzzing techniques, and especially coverage-guided fuzzing,
have proven to be very effective at finding bugs by focusing on mutating inputs that proved to be
interesting rather generating new ones from scratch. Figures 4 and 5 pictorially represent two such
runners: one for FuzzChick [11], which relies on branch coverage information obtained via binary
instrumentation, and one for Targeted PBT [14], which relies on an explicit user-provided feedback
function.

The coverage-guided (fuzzing) property runner, illustrated in Fig. 4, uses AFL instrumented code
coverage as feedback, generating a new input from scratch or mutating a previous input based
on the feedback, and is complemented with the shrinking loop in Simple Generational Property

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

(define (run-loop tests p)
(let loop ([n @] [passed @] [discards 0])
(if (= n tests) (result #f passed discards #f)

fet ¢ o (genrate p un-rackehecegen (Fleor Clog n 201
o heskcpreerty e

[(fail) (result #t passed discards | (shrink-eager p env))]

[(pass) (loop (addl n) (addl passed) discards)]
[(discard) (loop (addl n) passed (addl discards))1)))))

Fig. 3. Simple Generational Property Runner in Racket

Seed ool Fuzzing Loop Shrinking Loop
eed Pool
G check e dak @ .)
shrink e — | print e/e
gen/mutate £ C shrink e' | e C

Fig. 4. Coverage-Guided (Fuzzing) Property Runner

,,,,,,,,,,,,, Targeting Loop Shrinking Loop
Seed Pool
G check e check e' 3 '
shrink e _— print e/e
gen/mutate £ F feedback e C | M C

M

Fig. 5. Custom-Feedback Guided (Targeted) Property Runner

Runner illustrated in Fig. 1. The custom-feedback guided (targeted) property runner, illustrated
in Fig. 5, shows our runner to take explicit user-specified feedback into account instead of some
predefined notion of coverage.

We can straightforwardly implement such approaches as shown in the fuzzing property runner
of Fig. 7. This runner is parameterized over a simple (seed pool) interface, which abstracts away
search strategy (how to select which input to mutate) and power schedule (how long to fuzz it for)
concerns. We will revisit this abstraction in just a few sections (Sec 5.3). The targeted runner is
similar and can be found in Appendix A.1.

Parallel Runner. Inspired by QuickerCheck [9], we implemented a worker queue based paral-
lelization in Racket, which is depicted in Fig. 6 The workers share a common size variable, which
they atomically increment at each concurrent iteration, allowing near-linear parallel scalability.
The code for the Racket parallel runner can be found in the appendix (Sec A.2).

5.2 Comparison of Deep and Shallow Embeddings

Background: ETNA Bucket Charts. Throughout the sequence of case studies that follow, our
performance results will use ETNA bucket charts: each bucket represents the tasks (mutant-
property pairs) solved within a certain time limit in the average of 10 trial runs. The leftmost bucket

Deeper Properties for Programmable Testing

Parallel Testing Loop

check e

increase size —gen | C
size
3 heck e
ize <
W C C Shrinking Loop

= [9fem]
Size . L dmhal print o/e’
iney, shrink e AN
W [__check e shrink e | e’ C
T c C

gen

increase size

check e

gen

Fig. 6. Parallel Property Runner

with the darkest color denotes the tasks solved within 0.1 seconds, where the remaining buckets
progressively denote the tasks solved within 1, 10, 60 seconds, and the last bucket denotes the tasks
that were not solved within 60 seconds for at least one of the 10 trial runs. The legend for these
charts is shown in Fig. 8.

5.2.1 Comparison of Deep and Shallow Embeddings in Rocq. Our first case study focuses on
the performance implications of using deferred binding abstract syntax instead of the standard
generational runner. We benchmark our implementations of this loop for both Rocq and Racket
against the existing loops of the QuickCHick and RAckCHECK libraries in 3 ETNA workloads:
binary search trees (BST), red-black trees (RBT), and the simply-typed lambda calculus (STLC). Our
results show that libraries implemented via DBAS is on par with both QuickCHick and RACKCHECK,
where the property-runner we implemented is a user level construct as shown in Fig. 1in § 1.

The bucket charts in Fig. 12 show that using DBAS does not incur a performance penalty
compared to QuickCHIcK in the BST, RBT, and STLC workloads. In a total of 12 strategy/workload
pairs, DBAS-style Rocq library outperforms QuickCHICK in 9 of them, while QuickCHICK has a
better performance in 3 of them. Yet, there are no significant differences in the results of the two
libraries in terms of mean time to solve the tasks.

5.2.2 Comparison of Deep and Shallow Embeddings in Racket. In our Racket experiments, we
focused on comparing the DBAS-style Racket library with the shallow embedding implemented by
RackCHECK. We have conducted our experiments on the same BST, RBT, and STLC workloads by
porting the existing workloads in Haskell to Racket. In the process of porting these workloads, we
have also discovered and reported a bug in the RackCHECK core, which the authors have fixed in
the latest version of the library. *

Fig. 16 shows the results of the comparison of the deep and shallow embeddings in Racket. Once
again, we find no significant differences in performance between the two versions. However, during
the course of these experiments we found that the default configuration of RACKCHECK in terms of
size of generated terms led to significant performance degradation in the RBT case study. As size is
configurable in most PBT APIs, we have changed the RackCHECcK size function to be logarithmic
with respect to number of tests, as our property-runner does. Still, this further reinforces our point
on programmability: if sizes and similar aspects of generation are configurable (and severely impact
testing performance), why shouldn’t the runners themselves?

3The deanonymized version of our paper will have a citation to the bug report

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

Definition fuzzlLoop (fuel : nat) (cprop : Prop 0) {Pool}
— (seeds : Pool) : G Result :=

let fix fuzzLoop' (fuel passed discards: nat) seeds :=
match fuel with

| 0 => ret (mkResult discards false passed [])

| S fuel' =>

input < match directive with

end

let '(res, feedback) := res in
match res with
| Normal seed false => (* Fails %)

let shrunk := shrinkLoop 1@ cprop seed in

ret (mkResult discards true (passed + 1) printed)
| Normal seed true => (* Passes *)

| true =>

fuzzLoop' fuel' (passed + 1) discards seeds'
| false =>
let seeds' := match directive with
| Generate => seeds

end in
fuzzLoop' fuel' (passed + 1) discards seeds'
end
| Discard => (* Discard *)
match directive with

| Generate => fuzzloop' fuel' passed (discards+1) seeds

| Mutate source =>
| true =>
fuzzLoop' fuel' passed (discards+1) seeds
| false =>

fuzzLoop' fuel' passed (discards+1) —

end
end
end
end in
fuzzLoop' fuel @ @ seeds.

Fig. 7. Coverage-Guided Fuzzing Property Runner in Rocq

The coverage-guided fuzzing prop-
erty runner introduces some com-
plexity on top of the simple gener-
ational property runner, this com-
plexity is mainly related to the or-
chestration logic that manages the
seed pool, which is parametric over
the SeedPool interface. At each it-
eration of the loop, the seed pool
produces a directive, either to gen-
erate an input from scratch, or
mutate a previous input. The gen-
erated input is then passed into

function that
is also parameterized over a custom
instrumentation function.

In classic fuzz testing, this instru-
mentation function is branch or path
coverage, yet our Rocq library can
accommodate any function that ob-
serves information about the state
of the executed program, as in Pad-
hye et al. [20]. This is reflected in
the fuzzing loop in Fig. 7 where
feedback is received from the exe-
cution of the .
Such feedback can range from tradi-
tional branch or path coverage (as in
coverage-guided fuzzing) to timing
or memory usage (as in performance
fuzzing [12]).

This way, we view the fuzzing prop-
erty runner presented in Fig. 7 as (1) a
more generalized version of the clas-
sic coverage-guided fuzzing, and (2) a
property-based testing version of the
FuzzFactory [20], which allowed for
arbitrary instrumentation functions
to guide the search similar to the
fuzzing property runner we present
here.

Deeper Properties for Programmable Testing

0.1tols 10to 60 s unsolved

Fig. 8. ETNA Style Bucket Chart Legend

e
s . e s e =
34 9 20 6 30
Fig. 9. Binary Search Trees Fig. 10. Red-Black Trees

"
)
N}

=
o
w
-

N
@

=
o
=

-
N
-
~

(N
EN

=
@
-

w
I

Fig. 11. Simply-Typed Lambda Calculus

Fig. 12. Comparison of Shallow and Deep Embeddings in Rocq. Each color denotes a strategy, where the top
bar is DBAS and the bottom bar is the shallow behavior.

Il = Bespoke Generator, lll = Specification-Based Generator,

I = Type-Based Fuzzer, lll = Type-Based Generator.

Fig. 13. BST Fig. 14. RBT Fig. 15. STLC

Fig. 16. Comparison of Shallow(Rackcheck) and Deep(Tartarus) Embeddings in Racket. The purple bar on the
top is Tartarus with deep embedding, the green bar on the bottom is Rackcheck with the shallow embedding.
Il = Bespoke Generator used with Tartarus Library, [l = Bespoke Generator used with Rackheck Library.

5.3 An Exploration of Seed Pool Design Choices

Our second case study focuses on the programmability of the feedback-guided property runners.
Fuzzing research is ripe with exploring different strategies and power schedules [1, 2, 4, 6], with
researchers coming up with better and better designs. On the other hand, property-based testing

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

frameworks that support feedback-guided generation of inputs such as FuzzChick or Hypothesis,
which pride themselves in the power of testing arbitrary user-defined specifications, do not provide
an option to configure such crucial parameters of their feedback-guided property runners. We
illustrated two such feedback-guided runners earlier in this section, that abstract away such
concerns into a small AP, which we implement in Rocq using typeclasses (Fig. 17).

Class SeedPool {A F Pool: Type} := {
(* Creates an empty pool. x)

mkPool : unit — Pool; Class Utility {A F Pool: Type}
(* Adds a useful seed into the pool. x) “{SeedPool A F Pool} := {
invest : (A * F) — Pool — Pool; (* Returns true if the feedback
(x Decreases the energy of a seed after is interesting. x)
a useless trial. x) useful : Pool — F — bool;
revise : Pool — Pool; (* Returns a metric of how interesting
(*x Samples the pool for an input. *) the feedback is. *)
sample : Pool — -Directive A F; utility : Pool - F — Z;
(* Returns the best seed in the pool. *) }.
best : Pool — option (-Seed A F);

Fig. 17. SeedPool and Utility typeclasses used in Feedback-Guided Property Runners

The configurability enabled by DBAS allows the users to rely on a set of community-accepted
defaults chosen by framework developers, but also to explore if different choices from the literature
or novel ones they devised fit their testing needs better. In this case study, we explore six different
data structure representations to hold interesting seeds, as well as four different power schedules,
leading to a total of 21 different configurations. We picked these configurations to explore different
parts of the design space, such as the queuing strategy, the size/cardinality of the pool, whether the
pool is monotonic, and how many times a given seed is reused. We have conducted our experiments
on the IFC workload in ETNA, and we have used a type-based generator alongside a type-based
mutator to conduct our experiments. While our experiment reveals a clear winner for this case
study, we reiterate that our primary goal is not the exploration itself, but rather to demonstrate that
such an exploration is not only feasible, but natural to carry out with DBAS-style PBT libraries.

More concretely, we explore the following data structure representations, three that hold collec-
tions of seeds (as in FuzzChick), and three that only hold a single seed (as in Targeted PBT):

(1) FIFO Queue Seed Pool: A pool that holds a queue of seeds, and reduces the energy of the
current seed after usage. The pool only generates a new seed from scratch when the queue
is empty, and mutates the seed otherwise. When the energy of the current seed drops to 0,
it is removed from the queue. The next seed is chosen from the front of the queue. This was
the default behavior of FuzzChick.

(2) FILO Queue Seed Pool: The same as the FIFO Queue Seed Pool, but the next seed is chosen
from the back of the queue.

(3) Heap Seed Pool: Similar to the FIFO and FILO Queues, but the seeds are stored in a heap,
creating a priority queue.

(4) Static Singleton Pool: A pool that holds a single seed, and does not reduce its energy after
usage. The pool generates a new seed from scratch at the first iteration, and mutates its
seed for the subsequent iterations. The seed is only updated when a new seed with a better
feedback is generated via mutation. This essentially devolves the search to hill climbing, as
in the original Targeted PBT work [14].

Deeper Properties for Programmable Testing

(5) Dynamic Monotonic Singleton Pool: A pool that holds a single seed, and reduces its energy
after usage. The pool generates a new seed from scratch at the first iteration and when the
energy of the current seed is 0, mutates the seed otherwise. The seed is only updated when
a new seed with a better feedback is generated.

(6) Dynamic Resetting Singleton Pool: A pool that holds a single seed, and reduces its energy
after usage. As opposed to the Dynamic Monotonic Singleton Pool, once the current seed’s
energy is 0, the seed is effectively discarded and a new seed is generated from scratch.

All of the queues except the Static Singleton Pool have been tested with 4 different energy
schedules, where the energy of the seed was respectively up to 1, 10, 100, 1000, depending on its
interestingness. We report the experiments over 5 trials for each configuration within 65 tasks in
the IFC workload in ETNA. For brevity, the graphs omit 34 tasks none of the configurations have
solved, and only show the remaining 31 tasks. Each bucket represents the tasks solved within a
certain time limit for at least one of the 5 trials, where the leftmost bucket with the darkest color
denotes the tasks solved within 0.1 seconds, where the remaining buckets progressively denote the
tasks solved within 1, 10, 60 seconds, and the last bucket denotes the tasks that were not solved
within 60 seconds.

i s . : e
’ s s o . u
I - - B - - > s u
I - 2 I w 2 1
Fig. 18. Heap Seed Pool Fig. 19. FILO Queue Seed Pool Fig. 20. FIFO Queue Seed Pool
: “ z .
: n + u T 1
2 s n
E z = 2 >
Fig. 23. Static Singleton
Fig. 21. Dynamic Motononic Fig. 22. Dynamic Resetting Seed Pool
Singleton Seed Pool Singleton Seed Pool

Fig. 24. Comparison of Seedpool Strategies in Rocq. Each color denotes a strategy, where the bars are ordered
from energy levels 1, 10, 100, and 1000; except for the static singleton pool that ignores energy.

These results mark a task as “solved” for the purposes of a bucket chart if at least 1 out of 5
fuzzing campaigns finds a bug. If we switched to requiring all fuzzing campaigns to find the bug,
the results paint an even more compelling argument: only Heap-based pools consistently find
counterexamples—we omit the graphs because all other options fail to consistently solve a task
across runs, indicating a very high variance that heap seed pool does not exhibit. As a result, we
plan to advise QuickChick authors to use the effective configuration as a default going forward.

5.4 Comparison of Integrated Shrinking with External Shrinking

RackCHECK uses an integrated shrinking mechanism that shrinks inputs by leveraging the genera-
tors, rather than passing the inputs to an external shrinker. In this case study, we show that the
convenience of integrated shrinking sometimes comes at the cost of shrinking effectiveness, sug-
gesting that developers can benefit from a DBAS-style property language that allows for integrated
shrinking but does not enforce it.

The structure of the property runners for frameworks using integrated shrinking instead of
external shrinking is very similar to the simple generational property runner, with the small change
that they leverage generators with smaller sizes instead of an explicit shrinking function.

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

We have conducted our experiments on the System F workload in ETNA. We used the same
generator in both RackCHEck and DBAS-style Racket library, equipping our library with a simple
type-based external shrinker we implemented in place of the integrated shrinker. Our results show
that the the external shrinker successfully shrinks System F terms to a minimal counterexample
that is an average of 2.66 times smaller than the original input with a standard deviation of 1.23,
while the integrated shrinker of RAckCHECK only shrinks the inputs to an average rate of 1.04
times smaller than the original input with a standard deviation of 0.37. RaAckCHECK only shrunk
the inputs to smaller inputs in 66 out of the 360 trials, kept the size the same in 77, grew the inputs
in 68, and failed to shrink in 149 trials. Fig. 25 depicts these results, which might be surprising at
first glance: does the internal shrinker really only shrink the inputs in %20 of the trials? It turns
out that in this case, it does. Its notion of size is based on the structure of the generator rather than
on the input itself, so "smaller randomness" may not actually lead to smaller input values.

The point of this experiment is not to demonize internal shrinking—for many testing situations,
it is perfectly sufficient and much more user-friendly than a bespoke shrinker. However, in patho-
logical cases, programmers need an escape hatch, and DBAS provides the necessary configurability.

Fig. 25. Original sizes (continuous) and shrunk sizes (dashed) of external (left) and internal shrinker (right).

5.5 Parallelizing Property-Based Testing

An important recent work on novel property runners is QuickerCheck [9], where authors implement
and evaluate a parallel run-time for QuickCheck [5], achieving massive performance gains in a
variety of workloads. The underlying idea the authors propose is rather simple, they provide
an alternative, parallel property runner quickCheckPar, where multiple worker threads share a
common variable that controls the size of the generated inputs. Using this strategy, the authors
achieve an almost linear speed-up with respect to the number of physical cores used in testing.
Unfortunately, due to the rigid structure of shallow embedding based PBT libraries, creating such a
parallel runner requires intensive engineering effort. The commit history of the project shows that
the implementation of this new runner is an effort spanning 2 years and more than 50 commits.

In contrast, by leveraging the ability to implement property runners in user space, we were
able to implement a naive version of the QuickerCheck algorithm in a matter of hours for our
DBAS-style Racket library, with no prior knowledge of multicore Racket. Our implementation uses
worker threads with 2 shared atomic variables, one keeping the current number of tests across
threads, and one indicating if the process of testing is finished or not.

We have compared this parallel runner with 4 threads against the single threaded runner across
131 tasks (53 BST, 58 RBT, 20 STLC). As the results of the simple generational property runner

Deeper Properties for Programmable Testing

evaluation in Racket 5.2.2 shows, the majority of the tasks in ETNA [24] are trivial for bespoke gen-
erators, they can be solved within 0.1 seconds. In order to measure the impact of the parallelization
in the presence of such variation across tasks, we apply a set of cutoffs of time differences between
task solving performance, and report the average ratio of time to solve for each cutoff.

e For all tasks where the difference between time-to-failure for single and parallel runners is
greater than a millisecond, the average of their ratios is 1.2, where the parallel runner is on
average takes 20% more time than of the single threaded runner across 49 of the 131 tasks.

e For all tasks where the difference between time-to-failure for single and parallel runners is
greater than 0.1 seconds, the average of their ratios is 0.33, where the parallel runner is on
average 3 times faster than the single threaded runner across 10 of the 131 tasks.

e Only 1 task has a difference of more than 1 second, which the average time-to-failure for
single threaded runner is 3.56 seconds, and the average time-to-failure for the parallel
runner is 1.16 seconds, resulting in again a 3 times speed-up due to parallelization.

6 RELATED WORK

Throughout this paper, we have thoroughly discussed various property-based testing frameworks,
their property languages, and the property runners that they come bundled with. Here, we briefly
summarize related work in PBT and we also discuss related work in deeply embedded domain-
specific languages.

Property-Based Testing Frameworks. To our knowledge, there are no existing PBT frameworks that
give users full access to re-program the property runner. However, there are multiple frameworks
that make distinctly different choices in what capabilities they provide to users. Table 1 summarizes
the status quo in popular tools.

Framework \ Language \ Shrinking \ Feedback
QuickCheck [5] Haskell External
Hedgehog [25] Haskell Internal
QuickChick [21] Rocq External Coverage [11]
Hypothesis [16] Python Internal [15] Coverage*
Zest [18] Java AFL Trimming | Customizable[20]
QCheck OCaml Both*
Crowbar OCaml | AFL Trimming Coverage
RackCheck Racket Internal
QuviQ QuickCheck Erlang Both
PropEr Erlang Both Targeting [14]

Table 1. Shrinking and feedback options in popular frameworks; * denotes experimental or partial support.

Free Generators. The design of our deeply embedded property language builds on a rich literature
of embedded DSLs [8]. In particular, our approach parallels work on free generators [7], which
present a deeply embedded DSL for writing random generators. Deeply embedded properties and
generators are largely orthogonal—free generators may be able to simplify the implementation
of some of the different runners described in Section 5, but they do not allow the developer to
re-program the loop itself. This follows a more general trend of using free structures to increase
expressivity or usability in the programming languages community. For example, itrees [28]
introduced a general-purpose Rocq structure which is essentially a coinductive variant of free

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

monads, which allows them to represent and reason about interactive recursive programs. In follow
up work, Li and Weirich [13] explored how other free structures (such as applicative functors) can
be used as an alternative to free-monad-based embeddings.

Mixed Embeddings. There is also a long line of related work in attempting to bridge the benefits
of shallow embeddings (ease of use, as in the current property language) with those of deep ones
(extensibility). For example, Carrete et al. [3] showed how to use typeclasses in Haskell to allow for
shallow embeddings that can be interpreted in different ways, hinting at a way of incorporating a
deeper property language in a type system such as Haskell’s. More recently, Matsuda et al. [17]
showed how to convert between embedding representations by unembedding alleviating some of the
problems with Higher-Order Abstract Syntax representations. Finally, Prinz et al. [23] introduced
a hybrid embedding where typing derivations are represented as a deep embedding indexed by
shallow terms in the host language, offering pattern matching capabilities.

7 CONCLUSION AND FUTURE WORK

We have presented deferred binding abstract syntax (DBAS), a new approach to writing properties
for PBT that enables more flexible and programmable testing. The key advance made by DBAS
is to reify properties as a free data structure; allowing them to be written in a clear and readable
way, separate from the property runner that tests them. These more deeply embedded properties
can then be inspected and interpreted by user-defined property runners. With the help of DBAS,
developers in Rocq, Racket, and hopefully soon other programming languages, can tailor and
experiment with their setup to achieve optimal testing in their domain.

In the future, we intend to make DBAS convenient to program in languages with more standard
type systems than Rocq and Racket. In particular, Haskell is conspicuously missing from the list.
The main challenge in languages like Haskell is implementing contexts in a user-friendly manner.
In Haskell we can’t represent contexts with dependent types the way we implement them in Rocq,
but it is also too strongly typed for the looser approach we took in Racket. Modern advances
in dependently typed Haskell [27] may actually provide the power we need, but there are other
mainstream programming languages that lack this expressive power. Additional work might be
necessary to bring the full potential of DBAS to more users.

8 DATA AVAILABILITY STATEMENT

All our work will be made publicly available. We intend to submit an artifact for artifact evaluation
that includes the implementations of the property language in Rocq and Racket, as well as scripts
to re-execute the experiments carried out.

REFERENCES

[1] Marcel Bhme, Valentin J. M. Manes, and Sang Kil Cha. 2020. Boosting fuzzer efficiency: an information theoretic
perspective. In ESEC/FSE °20: 28th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and
Thomas Zimmermann (Eds.). ACM, 678-689. https://doi.org/10.1145/3368089.3409748

[2] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-Based Greybox Fuzzing as Markov Chain.
IEEE Trans. Software Eng. 45, 5 (2019), 489-506. https://doi.org/10.1109/TSE.2017.2785841

[3] Jacques Carrete, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged
interpreters for simpler typed languages. Journal of Functional Programming 19, 5 (2009), 509-543. https://doi.org/10.
1017/50956796809007205

[4] Jinfu Chen, Shengran Wang, Saihua Cai, Chi Zhang, Haibo Chen, Jingyi Chen, and Jianming Zhang. 2023. A Novel
Coverage-guided Greybox Fuzzing based on Power Schedule Optimization with Time Complexity. In Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering (Rochester, MI, USA) (ASE °22). Association
for Computing Machinery, New York, NY, USA, Article 172, 5 pages. https://doi.org/10.1145/3551349.3559550

https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/3551349.3559550

Deeper Properties for Programmable Testing

5]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In
Proceedings of the 5th ACM SIGPLAN International Conference on Functional Programming. ACM, 268-279. https:
//doi.org/10.1145/351240.351266

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++: combining incremental steps of fuzzing
research. In Proceedings of the 14th USENIX Conference on Offensive Technologies (WOOT 20). USENIX Association,
USA, Article 10, 1 pages.

Harrison Goldstein and Benjamin C. Pierce. 2022. Parsing Randomness. Proceedings of the ACM on Programming
Languages 6, OOPSLA2 (Oct. 2022), 128:89-128:113. https://doi.org/10.1145/3563291

Paul Hudak. 1996. Building domain-specific embedded languages. Comput. Surveys 28, 4es (Dec. 1996), 196. https:
//doi.org/10.1145/242224.242477

Robert Krook, Nicholas Smallbone, Bo Joel Svensson, and Koen Claessen. 2024. QuickerCheck: Implementing and
Evaluating a Parallel Run-Time for QuickCheck. arXiv:2404.16062 [cs.PL] https://arxiv.org/abs/2404.16062
Leonidas Lampropoulos. 2018. Random Testing for Language Design. Ph. D. Dissertation. University of Pennsylvania.
Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage Guided, Property Based Testing. In
Proceedings of the ACM Conference on Object-Oriented Programming Languages, Systems, and Applications (OOPSLA).
https://doi.org/10.1145/3360607

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz: automatically generating pathological
inputs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY, USA, 254-265. https://doi.org/10.
1145/3213846.3213874

Yao Li and Stephanie Weirich. 2022. Program adverbs and Tlén embeddings. Proc. ACM Program. Lang. 6, ICFP (2022),
312-342. https://doi.org/10.1145/3547632

Andreas Loscher and Konstantinos Sagonas. 2017. Targeted Property-Based Testing. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, 46-56. https://doi.org/10.1145/3092703.
3092711

David Maciver and Alastair F. Donaldson. 2020. Test-Case Reduction via Test-Case Generation: Insights from the
Hypothesis Reducer (Tool Insights Paper). In 34th European Conference on Object-Oriented Programming (LIPIcs, Vol. 166).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 13:1-13:27. https://doi.org/10.4230/LIPIcs. ECOOP.2020.13
David R. Maclver. 2016. Hypothesis: Property-Based Testing for Python. https://hypothesis.works/.

Kazutaka Matsuda, Samantha Frohlich, Meng Wang, and Nicolas Wu. 2023. Embedding by Unembedding. Proc. ACM
Program. Lang. 7, ICFP, Article 189 (Aug. 2023), 47 pages. https://doi.org/10.1145/3607830

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon. 2019. Semantic Fuzzing with Zest.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 329-340.
https://doi.org/10.1145/3293882.3330576

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon. 2019. Validity fuzzing and
parametric generators for effective random testing. In Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan,
and Jon Whittle (Eds.). IEEE / ACM, 266—-267. https://doi.org/10.1109/ICSE-COMPANION.2019.00107

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh Vijayakumar. 2019. FuzzFactory:
domain-specific fuzzing with waypoints. Replication Package for "FuzzFactory: Domain-Specific Fuzzing with Waypoints"
3, OOPSLA (Oct. 2019), 174:1-174:29. https://doi.org/10.1145/3360600

Zoe Paraskevopoulou, Catalin Hritcu, Maxime Denes, Leonidas Lampropoulos, and Benjamin C. Pierce. 2015. Foun-
dational Property-Based Testing. In 6th International Conference on Interactive Theorem Proving (ITP). https:
//doi.org/10.1007/978-3-319-22102-1_22

[22] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Generative type-aware mutation for testing

SMT solvers. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-19. https://doi.org/10.1145/3485529

[23] Jacob Prinz, Alex Kavvos, and Leonidas Lampropoulos. 2022. Deeper Shallow Embeddings. In 13th International

Conference on Interactive Theorem Proving (ITP) (Lecture Notes in Computer Science). https://doi.org/10.4230/LIPIcs.ITP.
2022.28

[24] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C. Pierce, and Leonidas Lampropoulos. 2023. Etna: An

Evaluation Platform for Property-Based Testing (Experience Report). Proc. ACM Program. Lang. 7, ICFP, Article 218
(aug 2023), 17 pages. https://doi.org/10.1145/3607860

[25] Jacob Stanley. 2019. Hedgehog: Release with Confidence. https://hackage.haskell.org/package/hedgehog/.
[26] Jingling Sun, Ting Su, Jiayi Jiang, Jue Wang, Geguang Pu, and Zhendong Su. 2023. Property-Based Fuzzing for

Finding Data Manipulation Errors in Android Apps. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December
3-9, 2023, Satish Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM, 1088-1100. https://doi.org/10.1145/3611643.

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3563291
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/242224.242477
https://arxiv.org/abs/2404.16062
https://arxiv.org/abs/2404.16062
https://doi.org/10.1145/3360607
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3547632
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://hypothesis.works/
https://doi.org/10.1145/3607830
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1109/ICSE-COMPANION.2019.00107
https://doi.org/10.1145/3360600
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1145/3485529
https://doi.org/10.4230/LIPIcs.ITP.2022.28
https://doi.org/10.4230/LIPIcs.ITP.2022.28
https://doi.org/10.1145/3607860
https://hackage.haskell.org/package/hedgehog/
https://doi.org/10.1145/3611643.3616286
https://doi.org/10.1145/3611643.3616286

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

3616286
[27] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A. Eisenberg. 2019. A role for dependent types in
Haskell. Proceedings of the ACM on Programming Languages 3, ICFP (July 2019), 1-29. https://doi.org/10.1145/3341705
[28] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),
51:1-51:32. https://doi.org/10.1145/3371119

A APPENDIX
A.1 Custom-Feedback Guided (Targeted) Property Runner

In recent years, PBT tools and mutation based fuzzers have begun to find common ground. On one
hand, fuzzing tools have been trying to move towards more and more structured generation of
inputs as well as incorporate and encode more complex properties than simply “the program doesn’t
crash”[19, 22, 26]. On the other hand, we have seen a rise in the popularity of property-based
testing tools that are able to guide the generation of inputs using feedback [11, 14, 18]. Following
this trend, we have used DBAS to implement mutation-based generation, developing two property
runners leveraging mutation and feedback.

A mutation-based targeted property runner has two important differences from the simple
generational property runner described in Fig. 2: the feedback and the targeting. It uses a genetic
algorithm based on a user provided custom feedback function for guiding the search towards
interesting inputs, and it employs a user-provided or type-derived mutator functions to mutate the
input it currently focuses on. The main benefit of such a runner is that it means developers can
potentially avoid writing complex generators for complex types and preconditions.

The runner is further parameterized by a seed pool (to keep track of interesting inputs) and a
utility function (to accommodate different types of feedback). As shown in the pioneering work of
Padhye et al. [20], customizable feedback under user control can lead to very effective testing, and
DBAS allows even more relevant choices to be made without needing to modify the internals of a
framework. A pictorial depiction of the targeted property runner is illustrated in Fig. 5.

In Fig. 26, we provide an annotated Coq implementation of the custom-feedback guided (targeted)
property runner in Coq. Similar to the simple generational runner or coverage-guided (fuzzing)
runner in Section 5, this runner reuses the building blocks we have provided for writing novel
property runners.

It is important to note that this specific runner is not a fixed part of our library, but merely a
default behavior that is convenient and can be readily used. Alternative implementations may
change the feedback behavior to accommodate feedback in the discard cases, or change the printing
or shrinking behaviors. Even the seed pool and utility typeclasses are provided as sensible defaults
and building blocks, rather than static design choices as is the case in shallow embedding based
PBT frameworks.

https://doi.org/10.1145/3611643.3616286
https://doi.org/10.1145/3611643.3616286
https://doi.org/10.1145/3611643.3616286
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3371119

Deeper Properties for Programmable Testing

Definition targetLoop (fuel : nat) (cprop : Prop \em)
(feedback_function : [{cprop}|— > Z) {Pool : Type}
{pool : SeedPool} (seeds : Pool)

(utility:Utility) : G Result :=
let fix targetLoop' (fuel : nat)

(passed : nat) (discards: nat)

(seeds : Pool) : G Result :=

match fuel with

| 0 => ret (mkResult discards false passed [])
| S fuel' =>

input « match directive with

o
=1
o

match res with
| Normal seed false => (* Fails x)
let shrunk := shrinkLoop 10 cprop seed in

ret (mkResult discards true (passed + 1) printed)

| Normal seed true => (* Passes *)

| true =>

targetLoop' fuel' (passed + 1) discards seeds'
| false =>
let seeds' :=
match directive with
| Generate => seeds

end in

targetLoop' fuel' (passed + 1) discards seeds

end
| Discard _ _ => (* Discard *)
targetLoop' fuel' passed (discards + 1) seeds
end
end in
targetLoop' fuel @ @ seeds pool utility.

Fig. 26. Custom-Feedback Guided (Targeted) Testing Loop in Rocq

A.2 Parallel Property Runner

The structure of the targeted prop-
erty runner depicted in Fig. 5 is
also reflected in the structure of the
targetLoop in Fig. 26. This loop per-
forms all the usual bookkeeping we
discussed in the simple loop of Fig. 2,
but adds mutation and feedback mech-
anisms guiding the search towards in-
teresting inputs. The loop is param-
eterized by the feedback function,
the seed pool, and the utility
function, where the seed pool can be
configured with different data struc-
tures such as a priority, FIFO, or FILO
queue, and the utility function can
be configured with different strategies
such as a threshold, or a more com-
plex stateful model. The loop uses the
Seed Pool and Utility typeclasses to
orchestrate the search.

Walking through the runner, we see
that it diverges from the simple gener-
ational property runner in Fig. 2 in its
input generation, where it might either
from scratch, or (filiate)
by the seedpool. This in-
put is then @) through the property,
and the failure and discarded cases are
handled exactly the same as the sim-
ple generational property runner. If the
test succeeds, depending on the feed-
back calculated by the user-provided
feedback function, the seed might be

(invested in the seed pool, or the

seed pool might be (Fevised) to reduce
the energy of the seed. The loop then

continues with the updated seed pool,
and the passed and discarded counts.

Below is a slightly abridged version of our Racket parallel testing runner. Parallelism is done
through Racket futures. We use a lock-free shared counter and a flag that is set if a counterexample
is found, which is necessary because Racket futures are not able to be halted arbitrarily. Each
worker thread grabs a test number from the counter, and loops until it either finds a counterexample

Alperen Keles, Justin Frank, Ceren Mert, Harrison Goldstein, and Leonidas Lampropoulos

or the counter exceeds the test number, with the main thread waiting for results from the workers

and combining them when they finish.
Like above this loop is not a fixed part of the library, and more efficient or sophisticated parallel
runners can be implemented without changing the underlying property representation.

(define (parallel-run-loop tests prop [num-workers (processor-count)])
; atomic counter for the test number
(define counter (box ©))
; flag set if a thread finds a counterexample
(define found-counterexample? (box #f))
; function called by each thread
(define (worker-thunk)
; each thread creates its own random number generator
(define rng (make-pseudo-random-generator))
(let worker-loop ([passed 0]
[discards 01)
; fetch and increment the test number counter
(define n (box-faa! counter 1))
(cond
; if the number of tests has exceeded the total, return the thread results
[(>= n tests) (results #f passed discards #f)]
; if another thread has found a counterexample, return the thread results
[(unbox found-counterexample?) (results #f passed discards #f)]
[else
; run a single test
(let-values ([(res env) (gen-and-run prop run-rackcheck-generator rng n)l)
(case res
; if a counterexample was found, set the found flag
; and return the thread results
[(fail)
(set-box! found-counterexample? #t)
(results #t passed discards env)]
; on pass or discard, increment the relevant counter and recur
[(pass) (worker-loop (addl passed) discards)]
[(discard) (worker-loop passed (addl discards))1))1)))
; spawn workers
(define workers
(for/list ([_ (in-range num-workers)])
(future worker-thunk)))
; read results from workers
(for/fold ([res (results #f @ @ #f)])
([worker workers])
; get results from this worker
(define worker-res (touch worker))
; combine with previous worker results
(results (or (results-foundbug? res) (results-foundbug? worker-res))
(+ (results-passed res) (results-passed worker-res))
(+ (results-discards res) (results-discards worker-res))
(or (results-counterexample res) (results-counterexample worker-res)))))

	Abstract
	1 Introduction
	2 A Mixed Property Language
	3 A Deeper Dependently Typed Property Language
	4 A Deeper Dynamically Typed Property Language
	5 Evaluation
	5.1 Flexibility: Encoding Property Runners
	5.2 Comparison of Deep and Shallow Embeddings
	5.3 An Exploration of Seed Pool Design Choices
	5.4 Comparison of Integrated Shrinking with External Shrinking
	5.5 Parallelizing Property-Based Testing

	6 Related Work
	7 Conclusion and Future Work
	8 Data Availability Statement
	References
	A Appendix
	A.1 Custom-Feedback Guided (Targeted) Property Runner
	A.2 Parallel Property Runner

