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ABSTRACT

Database management systems (DBMSs) are notoriously complex,
making them difficult to test effectively, especially during early de-
velopment when many features are incomplete. Traditional testing
tools like SQLancer and SQLSmith are highly effective for mature
databases, but they struggle with high false positive rates and low
actionability when applied to evolving systems.

We present D4, a paradigm designed specifically for debugging
databases during development, which integrates a testing frame-
work directly into the DBMS, enabling the random testing process
to evolve in tandem with the system and reducing false positives by
construction. We introduce generation actions, an abstraction for
allowing database developers rather than testing experts to specify
correctness properties. Finally, we develop a novel human-in-the-
loop counterexample minimization approach to produce actionable
bug reports.

We evaluate D4 on SomeDB!, an actively developed SQLite-
compatible OLTP engine, and show that it finds 23 unique, con-
firmed bugs-significantly outperforming off-the-shelf SQLancer
variants in terms of true positive rate and usefulness of bug re-
ports. Our results demonstrate that embedding testing infrastruc-
ture within the DBMS can dramatically improve its effectiveness
and usability during development.
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1 INTRODUCTION

Database Management Systems (DBMSs) are complex systems, and
inevitably, such complexity leads to bugs. To discover bugs, DBMSs
have historically used random testing. Prior work in this domain
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has ranged from binary fuzzing with AFL [6] to structured query
generation via SQLSmith [23], to finding logic bugs via test oracles
in SQLancer [21]. Within prior work, SQLancer is distinguished
by using specialized test oracles that reveal logic bugs in DBMSs,
and it has proven extremely successful at finding bugs in mature
databases.

Unfortunately, off-the-shelf testing frameworks are not as effec-
tive at finding actionable bugs in DBMSs that are actively being
developed and have many missing features. When the space of
randomly generated inputs is larger than the system under test
supports, many of the generated tests lie in the unimplemented
portion of the system, registering as false positives. Naturally, such
false counterexamples are of no help to developers of DBMSs.

One way to alleviate this issue is to tailor the testing framework
to the DBMS under test, ensuring that the testing framework only
tests implemented features. Unfortunately, existing frameworks are
not built with this flexibility in mind. In an off-the-shelf tester, such
tailoring would require developers of the DBMS to dive into the
internals of an external project, modify it to suit their needs, and
maintain those changes as the DBMS evolves.

We propose database-integrated testing, an alternative testing par-
adigm for debugging databases during development. We embed the
testing tool within the database itself, allowing for the generators
to naturally evolve alongside the DBMS, therefore avoiding false
positives by construction. At the same time, we leverage this tight
integration to empower developers to write their own oracles by de-
veloping a domain-specific language (DSL) for expressing properties
customized to particular features being developed. We also develop
a novel human-in-the-loop counterexample minimization approach
that incorporates developer feedback. Our hybrid approach aims for
significantly less complex counterexamples than generic methods
can achieve in the stateful setting of testing databases, resulting in
bug reports that are much more actionable.

We study this problem in the context of SomeDB!, an open-
source SQLite3-compatible OLTP database engine in active devel-
opment. With an average of more than 30 commits a day, SomeDB
is a rapidly evolving target for testing. D4 helped find 23 confirmed
bugs, with 19 of them already fixed with the aid of our hybrid mini-
mization approach. In comparison, running SQLancer-SQLite3 with
minimal modifications in SomeDB led to a false positive rate of 96.5%
with only one new bug, and running SQLancer-SomeDB, an exist-
ing independently developed SQLancer integration for SomeDB,
without modifications led to a false positive rate of 58% with six
newly discovered bugs.
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In summary, our contributions are as follows:

(1) We propose D4, a paradigm for testing databases during de-
velopment which integrates a testing framework within the
database and provides convenient and flexible abstractions
to developers while increasing the rate of true positive bug
reports when testing.

(2) As part of D4, we propose a novel interactive shrinking strat-
egy that significantly reduces counterexample complexity
by involving developers in the shrinking process.

(3) We implement D4 for SomeDB, an open source SQLite3-
compatible OLTP database under active development.

(4) We evaluate the effectiveness of D4 by demonstrating its
effectiveness in finding actionable bugs in SomeDB. D4 found
23 unique confirmed bugs with very few false positives.

2 BACKGROUND AND RELATED WORK

We begin by providing relevant background, first on coverage-
guided fuzzing and property-based testing at a high level, and then
focusing on SQLancer, the most prominent framework for testing
databases.

2.1 Coverage-Guided Fuzzing and
Property-Based Testing (PBT)

Coverage-guided fuzzing and property-based testing are both estab-
lished techniques for finding bugs in software. While they approach
bug-finding from different perspectives, they are not fundamentally
dissimilar.

On one hand, the fuzzing community primarily focuses on smart
and effective test-case generation that works out of the box with
minimal user input. The key idea is to leverage runtime feedback,
usually in the form of branch coverage [4, 6], though not always [18],
to keep track of inputs that exhibit interesting behavior (e.g. uncov-
ered new paths) and then mutate them in the hopes of discovering
even more interesting inputs. The most common oracle for deciding
if an input is a bug or not is staggeringly simple: does the program
crash? Other oracles include fuzzing against a model or a different
implementation (known as differential fuzzing [8, 12]) or using
domain-specific feedback such as time to run particular inputs [15].

On the other hand, the PBT community primarily focuses on em-
powering users to write their own oracles [5, 11]. PBT frameworks
usually offer DSLs for expressing oracles in the form of univer-
sally quantified executable predicates, as well as infrastructure for
writing generators - programs that generate test inputs to test such
predicates [5, 14].

Although traditionally these communities have been mostly
distinct, the lines between them are increasingly blurred. In fact,
fuzzing can be viewed as an instance of PBT where the property is
fixed (e.g. the program does not crash) and PBT can be improved by
extending its generation with coverage-guided capabilities. Such
approaches have been tried recently with great success [13, 17], and
in the context of database testing, both SQLancer and D4 follow
such a hybrid viewpoint.
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2.2 SQLancer

SQLancer is the result of a multi-year research project by Rig-
ger et. al that has set the bar for automated random testing of
databases since its inception in 2020. It hosts an extensible core
with adapters for many production DBMSs including but not lim-
ited to ClickHouse, Apache Datafusion, MySQL, PostgreSQL, and
SQLite. Within the last five years, SQLancer has not only grown
with respect to the breadth of databases it supports, but it has
also widened its arsenal of oracles. It started with Pivoted Query
Synthesis (PQS) [22], a rather "simple" containment property over
databases that has found at least 121 unique logic bugs in produc-
tion databases. Two metamorphic oracles followed: Non-Optimizing
Reference Engine Construction (NoREC) [19], which found 51 opti-
mization bugs, and Ternary Logic Partitioning (TLP) [20], which
discovered 77 novel logic bugs.

In addition to PQS, NoREC, and TLP, SQLancer currently sup-
ports Query Plan Guidance (QPG) [1] for feedback-guided genera-
tion, Cardinality Estimation Restriction Testing (CERT) [2] for find-
ing performance bugs in DBMSs, Differential Query Plans (DQP) [3]
for detecting bugs in the join optimizations, and lastly, Constant
Optimization Driven Database System Testing (CODDTest) [27]
for finding logic bugs using constant folding and propagation tech-
niques. As SQLancer focuses on testing large classes of behaviors
across a variety of databases, each oracle amounts to a significant
research contribution in a new research paper.

Integrating a new DBMS to SQLancer is a time-consuming but
straightforward process if SQLancer hosts a DBMS with similar
semantics to the new one. At a minimum, SQLancer integration
requires implementing AST connectors, generation APIs for the
relevant queries, and the oracles to use for detecting bugs. SQLancer
also has a notion of expected errors, bugs that the users can deem as
expected, so SQLancer does not report them as errors and continues
testing.

In terms of counterexample minimization, SQLancer offers two
possibilities. The first is a C-Reduce [24] style statement-level min-
imizer, and the other is an AST-level minimizer that can also mini-
mize individual statements themselves. Reducers implemented as
part of the oracles can also be applied to counterexamples.

3 SPECIFYING CORRECTNESS ORACLES

Rather than expecting database developers to modify SQLancer to
suit their particular needs, we instead wanted to offer them flexible
and extensible abstractions so that they test their database through-
out its development. D4 was created to provide such random testing
infrastructure that evolves alongside the DBMS and produces ac-
tionable bug reports for the database developers. This evolution
involves not only tailoring the input space of SQL generation to
the currently implemented portion of SomeDB for reducing false
positives, but also tailoring the correctness oracles to new features
as they are added, decreasing false negatives.

In this section, we will introduce generation actions, an impera-
tive formulation for properties that do not just describe what the
property tests, but how to test it. We will begin by using a very
simple commutativity property to convey the basic ideas and nota-
tion. We will then detail the oracles that were actually developed
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to test SomeDB, and conclude the section with a description of our
generation strategy.

For concreteness, let us consider the following equivalence rela-
tion leveraging the commutativity of (A): for any database db and
any two predicates p and g that can range over variables from the
database, if we evaluate SELECT (p A q) and SELECT(q A p) in db
they should yield equivalent results:

Vdb, p, q.variables(p) C db A variables(q) C db
— SELECT(p A q) = SELECT(q A p)

Testing such a property would entail generating an arbitrary data-
base, two expressions p and q that only mention variables from
that database, and then evaluating it repeatedly.

That is, we have precisely described what we want to test, the
exact conditions in which the test is valid, but left the how to a
database-agnostic framework. Instead of quantifying over db, p, q
and constraining them with post hoc relations, we propose a simple
abstraction for describing how db, p, q are generated with respect
to the constraints. We call this abstraction for describing properties
Generation Actions (GA).

Each generation action is parameterized by the type it returns
and the context it can use (implemented as a trait in Rust). As an
example, we can express the same high-level commutativity prop-
erty as a generation action that returns a property parameterized
by a context that contains a database db:

gen property db =
t « pick db.tables
c « pick t.columns
v « genOf expression c.type

p:=t.c=v
q « gen expression (t,c)
! r1 := SELECT (p AND q)

! r2 := SELECT (g AND p)
! assert(rl == r2)

Rather than independently generating p and g, we can, for the sake
of the example, fix some of the details of generation. As shown in
the code of the action, we can, for example, pick an arbitrary table
from the database, pick a column from that table, and generate an
expression v of that column’s type, before constructing an explicit
equality check t.c = v. Alternatively, we could generate an arbi-
trary expression q that can refer to both t and c. We use « to bind
the results of generation and := for regular let-style binding.

We can also express interactions with the database, explicitly an-
notated with a !. In this example, the only interactions are defining
the two different ways of conjuncting p and q and then asserting
their equality, but can generally be a query or an assertion.

An interaction not shown in this example that we will use in
our oracles is the ability to inject simulated faults. DBMSs interact
heavily with the underlying OS, file system, and network, all of
which have unpredictable and chaotic failure modes. As such, the
same set of interactions (e.g. CREATE-INSERT-DELETE) might result
in different results depending on any invisible failures in the mid-
dle. FoundationDB [28] is heavily praised for its use of simulation
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testing, injecting simulated faults within an otherwise correctly
working testing environment. We also introduced fault injection in
D4 as part of the DSL for generation actions, as exemplified by the
header initialization bug studied in §5.1.

3.1 Definitions of Oracles in D4

In this subsection, we walk over definitions of six different oracles
written as sequences of generation actions, three of which are
reimplementations of existing oracles in SQLancer. We start by
defining the first of the three SQLancer oracles we implemented,
Pivoted Query Synthesis (PQS) [22], as a universally quantified
proposition in Fig. 1. PQS states that given a set of tables in the
database, SELECTing for a row constructed from the contents of
those tables should contain the row.

Fig. 1 shows two formulations of PQS side by side, the proposi-
tional formulation with universally quantified variables that define
what PQS is on the left and a GA formulation of PQS with two
tables/columns as generation actions that define how PQS is tested
on the right, which closely resembles the implementation of PQS
that tests SomeDB today.

The propositional formulation quantifies over a database and a
sequence of tables, columns, and expressions, under the constraint
that the expressions will return TRUE when tested against a row
r. The corresponding GA closely follows along, but ensures these
constraints are satisfied by construction. We start by picking tables
t1, t2from the state db. tables, followed by picking columns from
the respective table. gen row t and gen expression (t, r) are de-
pendent generation primitives, where the former generates a row
based on the table t, and the latter generates an expression that
will evaluate to TRUE for row r of the table t.

In Fig. 2, we provide definitions of SQLancer oracles as GAs in
addition to the other oracles we implemented for D4. In Fig. 2a, we
demonstrate how to write Non-Optimizing Reference Engine Con-
struction Generation (NoREC) [19] as a GA. In Fig. 2b, we present
the GA for WHERE Extended case of Ternary Logic Partitioning
(TLP) [20] oracle from SQLancer.

We can express other properties that are not present in SQLancer,
including those fundamental to key-value stores such as Deleted
rows should not be in the table presented in Fig. 2c.

Properties, depending on how they are constructed, might some-
times be invalid. In Fig. 2d, applying WHERE or UNION ALL operation
for composing the results of multiple WHERE queries require both
sides of the WHEREs to have the same number of columns.

We can also write microproperties that reason over very specific
sequence of interactions, essentially allowing for creating regres-
sion properties that apply to situations that previously caused bugs.
Fig. 2e presents an example of a microproperty asserting that creat-
ing the same table twice causes an error.

In addition to the interaction level properties that are easily ex-
tensible, we also provide higher level correctness primitives similar
to the SQLancer oracles. As SomeDB is expected to be a drop-in
replica of SQLite in the long term, we can use differential testing.
Another oracle we implemented is for determinism testing, which
runs the same sequence of interactions for two identical databases
and checks if the resulting binaries are identical.
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db : Database
t1,t9...ty : Table
c1,¢2...cp : Column

P1, p2...pn : Expression

r : Row
Ydb, t1, ty...tn, C1, €2...Cn, P1, P2---Pn> T
t1,t2...ty € db

Aci €ty Acy €ty Ay € By

Ar.c1 €t1.c1 Ar.co € t9.c2... AT.Cp € ty.Cp

A p1(r) = TRUE A py(r) = TRUE... A pn(r) = TRUE

= r € SELECT %= FROM t;.cy...tn.cn WHERE p1...AND py
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gen property db:
t1 « pick db.tables
t2 « pick db.tables

cl « pick t1.columns
c2 « pick t2.columns

r1 < gen row t1
r2 <« gen row t2

r :=(rl.cl, r2.c2)

! INSERT INTO t1 VALUES r1
! INSERT INTO t2 VALUES r2

pl « gen expression (t1, r1)
p2 « gen expression (t2, r2)

! RS := SELECT r FROM t1, t2 WHERE p1 AND p2
! assert(r in RS)

Figure 1: Pivoted Query Synthesis as a universally quantified property (left) and as a generation action (right).

3.2 Query Generation

We designed our query generation algorithm with three goals in
mind. First, we wanted each automatically generated database in-
teraction to respect database state (e.g. we should not select from
a table that does not exist unless a user-written generation action
explicitly calls for it). Second, we did not want to rely on querying
the database itself to obtain the information necessary to ensure
the first goal—doing so would assume that those queries ran suc-
cessfully, defeating the purpose of testing. Finally, we wanted to
allow database developers to specify, in a lightweight manner, as-
pects of the distribution of generated interactions that they deemed
important, such as read/write heavy queries.

To that end, we follow a generation-by-execution style approach [10],

in which a model of the database as a key-value store is updated
during generation as a shadow state. Unlike traditional model-based
properties [11], this model is not used for differential testing, only
for keeping track of the relevant information for correct generation.
Algorithm 1 sketches our approach.

Algorithm 1 D4 Generation Algorithm

e «— {read : R,write : W, create : C} > Workload distribution

interactions < []

st « {read : 0, write : 0, create : 0, tables : []}

while N > 0 do
i « gen Interaction(st, e)
i.shadow(state)
interactions.push(i)
N«—N-1

end while

> Update the shadow state

Database developers can specify three parameters, R, W, and C,
which describe the proportion of read, write, and create instructions

that should appear in the generated interactions. At each step, the
algorithm generates one or more interactions that are compatible
with the current shadow state, updates this state to account for the
new interactions, and repeats until enough interactions have been
generated.

The way we generate individual interactions is shown in Al-
gorithm 1, choosing between generating a single interaction or
selecting among the user-defined generation actions to instantiate.
We assign a higher generation likelihood to interactions and actions
that bias the distribution towards the expected workload target. We
show an excerpt of that distribution in Fig. 3.

As mentioned in [22], SQLancer does not keep a separate state,
but instead uses the database APIs for querying the current state,
such as the table names in sqlite_master, due to the implementa-
tion effort for the shadow model. We opted for the shadow state
because it allows for complex reasoning over the database state for
constructing arbitrary queries and properties, and because it gives
us a canonical property over the database state: the shadow state is
identical to the database at any given moment.

4 SHRINKING STATEFUL SEQUENCES

Counterexample minimization is a fundamental part of random test-
ing. Simply finding bugs is not good enough—a developer must also
be able to actually fix the reported bug. A standard approach to per-
form such minimization is shrinking or delta-debugging [16, 25, 26]:
given a randomly generated input I : T, a reproducer function
R : T — bool that determines if a given input reproduces the
bug found by I, and a shrinking function S : T — [T] that pro-
duces smaller versions of the input, shrinking iteratively tries the
shrinking function until a smaller input that still triggers the coun-
terexample is found, and repeats the process until reaching a local
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gen property db:
t « pick db.tables
r « pick t.rows
p < gen expression (t, r)

! RS1 = SELECT * FROM t WHERE p
! RS2 = SELECT p FROM t
! assert(RS1.length() == RS2.count(1))

(a) Non-Optimizing Reference Engine
Construction (NoREC)
gen property db:
t « pick db.tables
r « pick t.rows
p « gen expression (t, r)

! DELETE * FROM t WHERE P
! RS = SELECT * FROM t WHERE p
! assert(r not in RS)

(c) "Deletes rows should not be in the table"

gen property:
t1 « gen id
cl « gen id
ct1l « gen columntype
c2 « gen id
ct2 « gen columntype
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gen property db:
t « pick db.tables
p <« gen expression (t)
p' « gen expression

! RST = SELECT * FROM t WHERE p

! RS2 = SELECT * FROM t WHERE p AND p' UNION ALL
SELECT * FROM t WHERE p AND (NOT p') UNION ALL
SELECT * FROM t WHERE p AND (p' is NULL)

! assert(RS1.length() == RS2.count(1))

(b) Ternary Logic Partitioning (TLP) WHERE Extended

gen property db:
s1 « gen SELECT db.tables
s2 « gen SELECT db.tables

! RS3 = s1 UNION ALL s2
! assume(s1.first().length() == s1.first().length())
! assert(RS1.length() + RS2.length() == RS3.length())

(d) "UNION ALL preserves cardinality”

! CREATE TABLE t1 (c1 ct1)]
! error := CREATE TABLE t1 (c1 ct1)]
! assert(error == "Parse error: Table {t1} already exists")

(e) "The same table cannot be created twice"

Figure 2: Definitions of Oracles as Generation Actions

min(e.read — state.read, e.write — state.write) — genPQS(st)
(e.read — state.read) | 2 +— gen NoREC(st)
(e.read — state.read) | 2 — gen TLPW here(st)

(e.read — state.read) + gen SELECT (st)
(e.write — state.write) — gen INSERT (st)
(e.write — state.write) — gen UPDATE(st)
(e.write — state.write) — gen DELETE(st)
(e.create — state.create) — gen CREATE(st)

Figure 3: Weights of selected individual interactions, biasing
generation towards the user-specified workload target.

minimum. Algorithm 2 provides the best-first search shrinking
loop.

Algorithm 2 shrink(I:T,R: T — bool,S: T — [T]) = T

result « I
ws «— [I]
while ws.len() > 0 do
e «— ws.pop()
if R(e) then
ws «— ws + S(e)
result «— e
end if
end while

Shrinking involves a fundamental trade-off depending on the
complexity of the shrinking function that generates candidates
for shrinking. On one extreme, trying all possible smaller inputs
would by construction reach a globally minimal counterexample.
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However, such an approach would be intractably expensive. On the
other extreme, trying too few smaller inputs might be much faster,
but risks not actually finding any smaller inputs that still trigger
the discovered bug. As a result, shrinking necessarily balances com-
pleteness and effectiveness of the minimization with the efficiency
of the search.

In the context of database testing, the problem is exacerbated: the
input type T is often a sequence of SQL statements, which means the
shrinker will have type S : [SQLStatement] — [[SQLStatement]],
with a total of 2V potential smaller sequences of statements for a
given sequence of length N, independent of the concrete shrinker
function. PBT libraries usually solve this exponential blow-up by
running incomplete, heuristic-based search algorithms [16]. A stan-
dard simplifying assumption [5] is to assume independence between
statements, trying to independently remove one statement at a time
rather than trying all combinations of them. However, in the state-
ful world of database testing, such an assumption can only get you
so far.

Consider the following sequence of interactions that creates two
tables, selects from the second, and inserts NULL into the first:

(1) CREATE TABLE t@ (c0);

(2) CREATE TABLE t1 (c1);

(3) SELECT * FROM t1;

(4) INSERT INTO t@ VALUES (NULL);

Assume now that an error arises when inserting a NULL value into
the table to, with creating the table at (1) and inserting at (4) suffi-
cient for minimal reproduction. Originally, executing instruction
(4) produces a runtime failure, which the reproducer function is
looking to replicate. A shrinker that assumes independence be-
tween each statement will start by removing (1) and running the
reproducer, which results in a different failure F’, because the table
t0 does not exist for the sequence. The shrinker concludes that (1)
contributes to the failure and should not be removed. In the next
iteration, the shrinker removes (2), this time resulting in another
error in (3) because t1 does not exist. The shrinker concludes (2)
is essential to reproduction, then removes (3) successfully. Thus,
(1)-(2)-(4) is reported as the minimal counterexample instead of
(1)-(4). The issue is path dependence, removing (2) then (3) produces
a different result than removing (3) then (2).

The dependencies in a real database execution are much more
complex than in this toy example, as the tables reside in the same
physical space, so every write to the database potentially affects
the results of all statements afterwards.

Another layer of dependencies is an artifact of our stateful gen-
eration strategy detailed in §3. Consider the following sequence
of interactions resulting from running the generation actions in
Figure 1.

(1) CREATE TABLE t1 (c1 INT, c2 INT);
(2) INSERT INTO t1 VALUES (10, 15);

(3) RS = SELECT c1 FROM t1 WHERE c2 > 10;
(4) assert (10) in RS

Some embedded assertions rely on specially crafted states of the
database. For instance, (4) is only valid if (2) is executed, because
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the predicate of the WHERE clause in (3) relies on the inserted value
in (2). If (2) is removed in the process of shrinking, the assertion
in (4) still fails and produces a false positive. As a solution, we can
hard-code n-tuples of interactions together so that the shrinker will
only remove them together, not separately.

Unfortunately, shrinking the counterexample by removing inter-
actions from the generated sequence still results in overly complex
counterexamples because individual statements can have arbitrar-
ily complex effects. An INSERT statement may insert 100 randomly
generated rows into the database or invoke another randomly gen-
erated WHERE, which can WHERE multiple tables or use compound
operators. The predicate expressions in the result columns or the
where clause of WHERE queries are essentially unbounded arithmetic
and logical expressions with bespoke semantics which can trigger
bugs in the query optimizer [19]. In corollary, shrinking interaction
sequences by removing interactions is required, but not sufficient.
We need mechanisms for shrinking the statements themselves too.

4.1 Shrinking in D4

In D4, we have implemented two automated shrinking mechanisms
for reducing the length of the generated interaction sequences. The
first is a heuristic shrinker, relying on heuristics such as isolation,
where any statement referencing a set of tables only affects those
tables. The second is a brute-force shrinker that recursively removes
interactions, similar to the Algorithm 2 presented at the beginning
of this section.

To overcome the practical limitations of these approaches, we
developed a hybrid interactive shrinking method, which we call
Human-in-the-Loop shrinking. We created a textual human-in-the-
loop shrinker where developers testing their changes to SomeDB
can inspect the generated interaction plan, remove interactions
based on their domain-specific knowledge, and tinker with the
output. The resulting counterexample can then be fed again to the
automatic shrinker, a process which can be repeated to reach a
counterexample that is both smaller than automatic methods could
achieve on their own, and obtained faster than a human tester could
simplify.

In Fig. 4, we depict a short sequence of actions resulting in the
successful removal of one interaction from the failing test case
produced by random generation. The user starts with a six inter-
action test case, tries removing the second interaction. Observing
the feedback from the shrinker, they revert the removal, remove
the third interaction successfully and reduce the sequence to five
interactions.

5 EVALUATION

In order to evaluate the effectiveness of D4, we explored the answers
to the following questions:

e RQ1: Does D4 find bugs in SomeDB?

e RQ2: How does D4 compare to existing state-of-the-art in
terms of bug finding performance?

¢ RQ3: How much does human-in-the-loop shrinking benefit
counter-example minimization on top of automated shrink-
ing?
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ICREATE TABLE t1 (id int)

IINSERT INTO t1 VALUES (3)

IINSERT INTO t1 VALUES (5)

User removes [INSERT INTO t1 VALUES (3)]
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|CREATE TABLE t1 (id int) |

|IN5ERT INTO t1 VALUES (5) |

IDELETE FROM t1 WHERE id = 3

ISELECT * FROM t1 WHERE id = 3 |

|assert(stuck.lu5t().is_empty())|

|CREATE TABLE t1 (id int)

|INSERT INTO t1 VALUES (3)

|INSERT INTO t1 VALUES (5)

User removes [INSERT INTO t1 VALUES (5)]

|DELETE FROM t1 WHERE id = 3 |

Failure does not reproduce

//;7

|SELECT * FROM t1 WHERE id = 3 |

|assert(stack.last()<i5,empty())P

|CREATE TABLE t1 (id int) |

|INSEET INTO t1 VALUES (3) |

|DELETE FROM t1 WHERE id = 3

ISELECT * FROM t1 WHERE id = 3 |

|assert(stack.last().is_empty())I

|BELETE FROM t1 WHERE id = 3 |

Failure reproduces

/

|SELECT * FROM t1 WHERE id = 3 I

|ussert(stuck.last().is_empty()) P

Figure 4: Interactive Shrinking as User Actions

5.1 ROQ1: Does D4 find bugs in SomeDB?

We have collected over 23 confirmed unique bugs found by D4 in
SomeDB over the course its development, evolving in complexity
as SomeDB grows. At the time of our submission, 19 of these 23
bugs have been fixed. Table 1 is the list of confirmed bugs, along
with the changes to the testing infrastructure that resulted in the
discovery. The bugs range from simple parser level bugs that could
be classified as minor problems, to severe logic bugs deep in the
core functionality of the database that could result in data loss.
Together with with the list and brief description of bugs presented
in Table 1, we choose three representative bugs as case studies,
detailing the conditions in which they were discovered and trig-
gered. We selected the three cases to demonstrate the diversity of
bugs found in SomeDB with respect to their origin (the bytecode
compiler, the B-tree index, and the database header), to how they
were discovered and reported (automated report, ourselves, and
the developers), and to the oracles used (simple deletion properties,
large indexed table generation, and developer-written properties).

Case 1: DELETE not emitting constant Where terms. Our first case
study concerns a bug in the compiler of SomeDB. SomeDB translates
SQL statements into bytecode and then runs that bytecode in a
virtual machine (this is the same approach that SQLite uses [9]).
The bytecode compilation is error-prone, as small changes to the
compiled SQL expression can greatly affect the generated bytecode.

The bug stemmed from an error in the bytecode compilation of
DELETE, specifically in the case of constant expressions in the WHERE
terms. Constant expressions can be compiled to run before the main
execution loop of the query, but instead the compilation step just
skipped them. This caused DELETE with a constant that evaluates to
FALSE to be incorrectly executed. Below is an instance of the bug
manifesting for DELETE FROM t WHERE 5-5. The provided bytecode
sequence, obtained using SQLite’s explain directive, shows the
correct result. The bug stemmed from the bytecode at addresses

2,9 and 10 not being emitted when the WHERE clause of DELETE was
composed of constants.

> explain DELETE FROM t WHERE 5-5;

addr opcode pl p2 p3 comment

0 Init @ 8 © Start at 8

1 OpenWrite @ 2 0 root=2; t

2 IfNot 17 1 if !r[1] goto 7
3 Rewind @ 7 @ Rewind table t
4 RowId @ 3 0 r[3]=t.rowid

5 Delete o 0 0

6 Next Q 4 0

7 Halt Q Q (]

8 Transaction @ 1 0 write=true

9 Integer 5 2 0 r[2]=5

10 Subtract 2 2 1 r01]=r[2]-r[2]
11 Goto o 1 0

This bug was automatically reported by D4 running in SomeDB
CI and fixed within the week. The bug was discovered as a result of
our the PQS implementation in SomeDB augmented with validity
preserving queries between the INSERT and SELECT statements. The
random tester added a naive DELETE operation that should not have
affected the results of the SELECT, keeping the containment property
intact, but the assertion that the inserted row should be in the result
of the SELECT failed, triggering the bug report.

Case 2: Interior node replacement caused self-reference when depth
exceeded 2. Our second case study focuses on a bug in the balanc-
ing logic of the B-tree implementation of SomeDB. As mentioned
throughout the paper, we have paced the generated interactions
to match the state of the SomeDB development at the time. While
we were only generating very simple CREATE, INSERT, and SELECT
statements at the beginning, we added DELETE and UPDATE as they
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were added to the database. More recently, SomeDB added data-
base indexes as an experimental feature, at which point we ex-
tended generation to support statements such as SELECT DISTINCT,
CREATE INDEX, and compound operators such as UNION or UNION ALL
to the space of generated inputs, and started generating larger ta-
bles to take advantage of the indexes. This resulted in triggering
a crash failure in the core B-tree data structure that could result
in data loss or corruption if not fixed. We reported this bug to the
SomeDB developers, and the bug is currently fixed.

Case 3: Database Header Initialization. Our third case study high-
lights the importance of considering fault scenarios. SQLite uses
write-ahead logs (WAL) in order to provide non-blocking reads
and ACID transactions in the database. This strategy incurs an
additional complexity to the persistent state of the DBMS as the
database file might be out-of-date for certain operations, requiring
the DBMS to read such information from WAL. This bug is the
result of such a situation, where metadata like database size and
schema is out-of-date at the time of reading, leading to incorrect
operations. D4 found this bug through an assertion failure in the
freelist structure in the database header.

As a result, the developer reporting the original bug has written
the first example of a regression property, added a new fault primitive
ReopenDatabase that closes down existing connections with the
database and reopens them later, enabling the detection of any
future bugs that might be a result of an error in the persistent state
logic of SomeDB.

5.2 RQ2: How does D4 compare to SQLancer in
terms of finding actionable bugs?

In order to answer RQ2, we compare the rate of true positives and
false positives reports from three different random testing con-
figurations: D4, the default SQLite3 integration of SQLancer with
pragmas disabled (denoted SQLancer-SQLite), and the fork of a
work-in-progress SomeDB integration of SQLancer by a SomeDB
contributor (denoted SQLancer-SomeDB). Pragmas had to be re-
moved for SQLancer-SQLite because most of them were unimple-
mented in SomeDB, causing all reported bugs to be false positives
in our testing.

We define an actionable bug report from the tools as a sequence
of SQL statements that would have been submitted and confirmed
as a bug at the time of its original report. We used the 23 bug
reports we analyzed in the previous section as the ground truth,
finding commits which are known to have bugs. The 23 bugs span
over 20 SomeDB commits, six of which do not provide the Java
bindings necessary for connecting with SQLancer. In the remain-
ing 14 commits in the commit history, we ran all three tools, D4,
SQLancer-SQLite, and SQLancer-SomeDB, 100 times.

We analyzed the results of each run and separated them into three
bins: True Positives that would have been submitted and confirmed
as bugs, False Positives that are reported as failures by the tools
but do not constitute bugs as they are unimplemented features or
bugs in the generation, and No Bugs that did not report a failure,
provided in the stacked bar chart in Fig. 5.

As seen in the figure, SQLancer-SQLite achieves a true positive
rate of less than 10% for all 14 commits. SQLancer-SomeDB has
much lower false positive rate on average (58%), with a 42% true
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positive rate that is much closer to D4’s 63%. The first difference
between D4 and SQLancer-SomeDB lies in the false positives, with
D4 under 1% against SQLancer-SomeDB’s 58%. The major difference
is the number of actionable bugs, calculated by de-duplicating the
reasons for failure in each true positive. In comparison to the 25
unique bugs found by D4, SQLancer-SQLite and SQLancer-SomeDB
found six unique bugs in total not found by the D4, which we have
also submitted as separate issues (described below).

These results do not imply that D4 has a better generator or a
better set of oracles than SQLancer. Rather, they demonstrate that
for actively developed databases with many missing features, using
SQLancer is simply not feasible due to its comprehensiveness. D4,
by the virtue of developing with the database, finds more bugs.

Bugs Found by SQLancer.

o (UPDATE t SET (c@, c@)=(@, 0)): This expression results in
a "Column specified more than once" error that has not been
fixed at the time of our submission.

(SELECT (0x®)): There was a parsing error for hexadecimals
that resulted in an "invalid float literal" error that has since
been fixed before our experiments with SQLancer.

(SELECT * FROM t WHERE c@ GLOB c®): There was a logic bug
in the GLOB that panicked when the values passed were not
TEXT. Executing this statement after inserting a NULL triggered
the bug, which was fixed soon after we reported it.

(INSERT INTO t VALUES ("a")): Using double quotes for string
literals is discouraged, and SQLite3 even provides a runtime
flag for disabling it. We reported this bug as SomeDB pan-
icked for the provided statement.

BETWEEN expressions were not rewritten when used within
INSERT, but the query compiler expected them to be rewritten.
We reported this bug as SomeDB panicked for the provided
statement.

(INSERT INTO t(c2, c@) VALUES (@, ©), (0, ©)): Therewas
a bug in calculating the column indexes when inserting val-
ues to a table in reverse order. SQLancer discovered the bug
when the initial table t had a NOT NULL clause for the column
c0, which promptly failed after executing the statement. We
reported this bug after manually inspecting the result of the
failure.

In all six cases, we see the benefit of generating the entire possible
input space for SQL dialect of SQLite, which D4 does not, hence
missing such bugs. Our evaluation demonstrates the benefit of such
comprehensive generation, but also shows that without tailoring
to the database, the produced bug reports will be overwhelmingly
dominated by false positives and reproductions of existing bugs yet
to be fixed.

5.3 RQ3: Does interactive shrinking benefit to
counter-example minimization on top of
automated shrinking?

While we have not yet run a formal user study to measure the

effects (see §7), we have anecdotal evidence that D4’s approach

to shrinking is effective. Multiple SomeDB developers have been
using the interactive shrinker successfully, and the authors have

(INSERT INTO t VALUES ((@ BETWEEN @ AND @)), (@)): Constant
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Bug Id | Description Oracle Module Status
466 TRUE not accepted as catch-all predicate No Error Query Compiler Fixed
548 Infinite loop when checkpointing on Linux No Infinite Loop | I/O Subsystem Fixed
629 Query Optimizer broke TRUE in predicates No Panic Query Optimizer Fixed
662 SELECT with nested Boolean expressions sometimes gave no results PQS Query Optimizer Fixed
681 Storage Engine (B-tree) insert caused subtract with overflow No Panic Storage Engine (B-tree) | Fixed
682 Faulty recursive binop logic caused SELECT to miss rows PQS Query Compiler Fixed
924 Storage Engine (B-tree) balancing caused page corruption when deleting | No Panic Storage Engine (B-tree) | Fixed
1040 LIKE operator did not work for non-text values No Panic Query Executor Fixed
1203 Storage Engine (B-tree) balancing error No Panic Storage Engine (B-tree) | Fixed
1629 Storage Engine (B-tree) cell updates caused infinite loop in UPDATE No Infinite Loop | Storage Engine (B-tree) | Fixed
1734 DELETE did not emit conditional jumps if WHERE term was constant Delete-Select Query Compiler Fixed
1815 Storage Engine (B-tree) failed to balance when insert caused cell overflow | No Panic Storage Engine (B-tree) | Fixed
1818 Always read DB header and schema from file instead of memory page No Panic Page Manager Fixed
1975 Storage Engine (B-tree) expected table or index leaf page No Panic Storage Engine (B-tree) | Fixed
1991 Use after free when validating B-tree balance No Panic Storage Engine (B-tree) | Fixed
2024 SELECT ... LIMIT resulted in different rows from SQLite Differential Query Executor Open
2026 UPDATE then SELECT resulted in different rows from SQLite Differential Query Executor Open
2047 Overflow cell with divider cell was not found due to faulty validation No Panic Storage Engine (B-tree) | Fixed
2074 SELECT hung with long text, CacheFull error No Panic Page Manager Open
2075 Large table with 128 columns handled incorrectly No Panic Page Manager Open
2088 Incorrect record header size calculation No Panic Page Manager Fixed
2106 Interior node replacement caused self-reference when depth exceeded 2 No Panic Storage Engine (B-tree) | Fixed
2116 Advance after post-delete balancing did not advance B-tree cursor No Panic Storage Engine (B-tree) | Fixed
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Figure 5: Comparison of True Positives, False Positives and No Bugs for D4, SQLancer-SQLite, SQLancer-SomeDB

Table 1: List of confirmed unique SomeDB bugs found and reported by D4
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also used the interactive shrinker for minimizing counterexamples
that were reported to SomeDB.

A brief analysis of the bug reports demonstrates that: for bug
ID 924, we were able to interactively shrink the bug to five interac-
tions from its starting point of 1000. For bug ID 1975, automated
shrinking reduced the original 1000 interactions to 40 interactions,
which developers were able to reduce down to 12 interactions via
interactive shrinking. Lastly, in bug ID 2047, the 20 interactions
that were produced from automatic shrinking were reduced to 11
interactions.

Our answer to RQ3, therefore, is positive but not yet conclusive.

6 DISCUSSION

D4 is a paradigm for testing databases during development, even
though we use D4 the paradigm and D4 for SomeDB interchange-
ably throughout the paper. We compare the performance of D4
for SomeDB against SQLancer with minimal modifications, which
begets some questions worth discussing.

Why not integrate SQLancer to the development process instead of
developing a random testing framework from scratch? As we briefly
discussed in previous sections, SQLancer is not designed for the
constant evolution of the random testing infrastructure along with
the project. It is a massive project with its own trajectory, devel-
opments, new oracles that can reveal entirely new classes of bugs.
D4 aims to empower the database developers themselves by giving
them a mechanism to debug the database, instead of giving them
bugs to solve. There are additional practical barriers. For example,
the Java bindings for SomeDB are not complete at the moment,
so we had to fix bugs in the SQLancer-SomeDB integration imple-
mented by one of the SomeDB developers that relied on incomplete
features that silently failed. Panics in SomeDB also caused SQLancer
to terminate, so it was not possible to shrink the counterexamples
with SQLancer reducers without further changes to the integration.

Given that SQLancer supports expected errors for reducing false
positives, could we use expected errors for known bugs and false posi-
tives we found to discover more bugs? We could use expected errors,
and we would have discovered more bugs in the process. In terms
of any static evaluation target, tweaking SQLancer by progressively
finding more bugs as found ones are marked as expected, it is always
possible to make SQLancer find more bugs. The point, however,
is that constant modification is not the expected and supported
mode of operation when using SQLancer. Although it is phenom-
enal for off-the-shelf usage, its capabilities unfortunately act as a
disadvantage against its use in actively developed projects with
many missing features. We have shown that a project with a much
smaller scope can adopt the ideas of input generation and oracles in
SQLancer as well as other related work on database testing such as
Apollo [12] or Thanos [7]. We also have demonstrated that database
developers can turn their domain expertise into writing properties
as presented in the third case study in §5.1.

Additionally, during our evaluations as well as through the bug
reports we submitted, we observed that many crash failures are the
result of inline assertions in SomeDB. These crashes directly imply
logic bugs as they contradict invariants specified by the developers,
which blurs the distinction between crash failures and logic bugs in
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the literature. Such assertions do not completely replace SQLancer
oracles or SomeDB properties because they do not have the ability
to follow values through execution in a holistic way as properties
do, so they can only reason about local invariants.

Role in SomeDB. As a last point of discussion, we would like to
clarify our role in the implementation of D4 in SomeDB, in order
to fully credit the open source contributors for their work. At the
time we started working on SomeDB, it had a small, unstructured
random testing infrastructure that overwhelmingly focused on
being able to support Deterministic Simulation Testing [28].1/O was
implemented in a way that could be easily simulated, which allowed
for FAULTSs to be integrated in the generated interactions. We have
taken a role as an external open source contributor to the project,
gradually proposing improvements to random testing infrastructure
such as the Generation Actions DSL, most of the existing properties,
stateful random generation, heuristic, brute-force and interactive
shrinking, additional oracles such as differential testing against
SQLite and determinism checking, and have implemented such
proposals. The infrastructure has grown outside of our control at
times, producing regressions through the development, along with
many improvements by the maintainers and contributors to the
project that contributed to the list of bugs found in Table 1. The
SQLancer-SomeDB integration was almost entirely developed by
one contributor, which we have used in our evaluations with small
changes to their code.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced D4, a new paradigm and concrete
implementation for debugging databases during development. By
tightly integrating the testing infrastructure with the DBMS itself,
D4 avoids many of the limitations that off-the-shelf testing frame-
works like SQLancer face when applied to rapidly evolving systems
with incomplete feature sets. Our framework provides developers
with tools to express custom correctness properties via generation
actions, ensures state-aware query generation, and incorporates
human-in-the-loop shrinking to make counterexamples actionable.

We implemented D4 for SomeDB, an open-source, actively devel-
oped OLTP engine compatible with SQLite3, and demonstrated its
effectiveness in practice. D4 discovered 23 unique confirmed bugs,
with nearly all of them resulting in actionable reports and mini-
mal false positives. In contrast, state-of-the-art testing frameworks
struggled with high false positive rates in the same setting.

Our experience shows that when databases are still under heavy
development, flexible, integrated testing approaches that evolve
alongside the system are significantly more productive and developer-
friendly than external, comprehensive tools. Moreover, our ap-
proach fosters collaboration between testing infrastructure and
DBMS development by giving developers intuitive ways to encode
domain-specific knowledge as properties.

Looking forward, we plan to extend D4 in several directions.
First, we are exploring novel methods to stateful shrinking based
on generation actions, as well as running a comprehensive user
study that will measure the effects of different shrinking strategies
on debugging performance. Second, we aim to expand our sup-
port for fault injection, enabling simulation of more realistic and
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chaotic failure conditions. Third, we are interested in incorporat-
ing feedback-guided generation strategies, borrowing ideas from
coverage-guided fuzzing to improve exploration. Finally, we plan to
develop a module for concurrency testing, which remains a signifi-
cant challenge in DBMS correctness. Additionally, we would like to
continue developing the random testing infrastructure as SomeDB
evolves, add new generators that explore previously unexplored
parts of the input space, as well as adding new oracles taken from
the literature on database testing.

D4 bridges the gap between random testing and practical de-
bugging by empowering developers to guide, understand, and act
on test results. We believe this paradigm has broad applicability
beyond SomeDB and offers a promising path forward for testing
other evolving and complex systems.
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